Turbocharger Integration into Multidimensional Engine Simulations to Enable Transient Load Cases

Despite the increasing interest in multidimensional combustion engine simulation from researchers and industry, the field of application has been restricted to stationary operating points for turbocharged engines. Andreas Kächele presents a 3D-CFD approach to extend the simulation into the transient...

Full description

Bibliographic Details
Main Author: Kächele, Andreas
Format: eBook
Language:English
Published: Wiesbaden Springer Fachmedien Wiesbaden 2020, 2020
Edition:1st ed. 2020
Series:Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:Despite the increasing interest in multidimensional combustion engine simulation from researchers and industry, the field of application has been restricted to stationary operating points for turbocharged engines. Andreas Kächele presents a 3D-CFD approach to extend the simulation into the transient regime, enabling the detailed analysis of phenomena during changes in engine operating point. The approach is validated by means of a virtual hot gas test bench and experiments on a two-cylinder engine. Contents Approaches for the Turbocharger Integration into the 3D-CFD Simulation Domain Validation by Means of a Virtual Hot Gas Test Bench Comparison of the 0D-Turbocharger against Experimental Data from a Two-cylinder Engine Target Groups Researcher and students of internal combustion engines Engine developers and automotive engineers About the Author Andreas Kächele was research associate at the Research Institute of Automotive Engineering and Vehicle Engines (FKFS) in Stuttgart, Germany, focusing on multidimensional engine simulation. After obtaining his PhD from Prof. Dr.-Ing. M. Bargende, he continues to work in the virtual engine design with emphasis on combustion process development
Physical Description:XXII, 123 p. 57 illus online resource
ISBN:9783658287863