Analysis of Injection Processes in an Innovative 3D-CFD Tool for the Simulation of Internal Combustion Engines

Due to the large number of influencing parameters and interactions, the fuel injection and therewith fuel propagation and distribution are among the most complex processes in an internal combustion engine. For this reason, injection is usually the subject to highly detailed numerical modeling, which...

Full description

Bibliographic Details
Main Author: Wentsch, Marlene
Format: eBook
Language:English
Published: Wiesbaden Springer Fachmedien Wiesbaden 2019, 2019
Edition:1st ed. 2019
Series:Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:Due to the large number of influencing parameters and interactions, the fuel injection and therewith fuel propagation and distribution are among the most complex processes in an internal combustion engine. For this reason, injection is usually the subject to highly detailed numerical modeling, which leads to unacceptably high computing times in the 3D-CFD simulation of a full engine domain. Marlene Wentsch presents a critical analysis, optimization and extension of injection modeling in an innovative, fast response 3D-CFD tool that is exclusively dedicated to the virtual development of internal combustion engines. Contents The 3D-CFD Tool QuickSim Numerical Boundary Conditions Liquid Fuel Modeling Parametrization of Injector Properties Target Groups Researchers and students of internal combustion engines Automotive engineers and engine developers About the Author Marlene Wentsch works as research associate in the field of 3D-CFD simulations of injection processes at the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart, Germany
Physical Description:XXXII, 155 p. 89 illus., 12 illus. in color online resource
ISBN:9783658221676