Nanoparticle-Macrophage Interactions Implications for Nanosafety and Nanomedicine

Nanoparticles (NPs) offer unique properties for biomedical applications, leading to new nanomedicines. Recent examples of advanced nanoparticle-based nanomedicines are COVID-19 RNA vaccines. Regardless of the delivery route of the NPs into the body (intravenous or subcutaneous injection, oral, intra...

Full description

Bibliographic Details
Main Author: Bondarenko, Olesja
Other Authors: Torres Andón, Fernando
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
N/a
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 03858nma a2200865 u 4500
001 EB002131909
003 EBX01000000000000001269966
005 00000000000000.0
007 cr|||||||||||||||||||||
008 221110 ||| eng
020 |a 9783036546001 
020 |a 9783036545998 
020 |a books978-3-0365-4600-1 
100 1 |a Bondarenko, Olesja 
245 0 0 |a Nanoparticle-Macrophage Interactions  |h Elektronische Ressource  |b Implications for Nanosafety and Nanomedicine 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (208 p.) 
653 |a ICP-MS analysis of cell bound SiO2 
653 |a macrophage 
653 |a in vitro testing 
653 |a anti-inflammatory 
653 |a inflammation 
653 |a gold nanoparticles 
653 |a n/a 
653 |a protein corona 
653 |a Caco-2 cells 
653 |a oral administration 
653 |a monocytes 
653 |a bovine serum albumin 
653 |a nanomaterial 
653 |a cell uptake 
653 |a wound healing 
653 |a 2D cultures 
653 |a zebrafish 
653 |a rifabutin 
653 |a device 
653 |a innate memory 
653 |a carbon nanotube 
653 |a synthetic amorphous silica 
653 |a phagocytosis 
653 |a in vitro models 
653 |a class A type 1 scavenger receptors 
653 |a nanostructured lipid carriers 
653 |a nanomaterials 
653 |a nanoparticle 
653 |a macrophages 
653 |a osteoarthritis 
653 |a NR8383 alveolar macrophage 
653 |a Crohn's disease 
653 |a transcriptomics 
653 |a nanoparticles 
653 |a foot ulcer 
653 |a cytotoxicity 
653 |a chronic wound 
653 |a chemokines 
653 |a drug delivery 
653 |a immune system 
653 |a macrophage-nanoparticle interaction 
653 |a 3D cultures 
653 |a Medicine and Nursing / bicssc 
653 |a multi-walled carbon nanotubes 
653 |a innate immunity 
653 |a scavenger receptor 
700 1 |a Torres Andón, Fernando 
700 1 |a Bondarenko, Olesja 
700 1 |a Torres Andón, Fernando 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
024 8 |a 10.3390/books978-3-0365-4600-1 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/6070  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/93174  |z DOAB: description of the publication 
082 0 |a 610 
082 0 |a 700 
520 |a Nanoparticles (NPs) offer unique properties for biomedical applications, leading to new nanomedicines. Recent examples of advanced nanoparticle-based nanomedicines are COVID-19 RNA vaccines. Regardless of the delivery route of the NPs into the body (intravenous or subcutaneous injection, oral, intranasal, etc.), NPs inevitably come into contact with immune cells, such as macrophages. Macrophages are phagocytizing cells that determine the fate and the lifetime of NPs in relevant biological fluids or tissues, which has consequences for both nanosafety and nanomedicine. The aim of this Special Issue is to cover recent advancements in our understanding of NP-macrophage interactions, with a focus on in vitro models for nanosafety and novel nanomedicine approaches that allow the modulation of the immunological profile of macrophages. The current Special Issue compiles nine papers: seven research articles and two review articles. The original articles include studies on the interaction of different nanomaterials, such as multi-walled carbon nanotubes (MWCNTs), amorphous silica, gold nanoparticles, lipid carriers, and microspheres, with macrophages in different scenarios.