Magnetic Properties of Layered Transition Metal Compounds

In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single c...

Full description

Bibliographic Details
Other Authors: de Jongh, L.J. (Editor)
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 1990, 1990
Edition:1st ed. 1990
Series:Physics and Chemistry of Materials with Low-Dimensional Structures
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Table of Contents:
  • 8.2. NiCl2 and CoCL2 graphite intercalated compounds NiCl2-GIC CoCl2-GIC
  • 9. Concluding remarks
  • Acknowledgement
  • References
  • Spin Dynamics in the Paramagnetic Regime: NMR and EPR in Two-Dimensional Magnets
  • 1. Introduction
  • 1.1. Dynamics of the 2-spin correlation functions
  • 1.2. Nuclear magnetic resonance (NMR)
  • 1.3. Electron paramagnetic resonance (EPR)
  • 2. General formalism
  • 2.1. Diffusion and dimensionality
  • 2.2. Cut-off and EPR linewidth
  • 3. EPR spectrum
  • 3.1. Diffusion of 4-spin correlation functions
  • 3.2. Secular contribution D0
  • 3.3. Nonsecular contributions
  • 3.4. Satellite line
  • 4. Experiments on quasi 2-d Heisenberg magnets
  • 4.1. NMR experiments
  • 4.2. EPR experiments
  • 4.2.1. Angular dependence of linewidth
  • 4.2.2. Frequency dependence of magic angle linewidth
  • 4.2.3. Dynamic shift
  • 4.2.4. Lineshape of the main line
  • 4.2.5. Satellite lines at half resonance field
  • 5. Critical dynamcis
  • 5.1. Critical behaviour of the NMR line
  • 5.1.1. Isotropic regime
  • 5.1.2. Anisotropic regime
  • 5.1.3. Experiments
  • 5.2. Critical behaviour of the EPR linewidth
  • 5.2.1. Ferromagnets
  • 5.2.2. Antiferromagnets
  • 5.3. AC susceptibility
  • 6. Conclusions
  • References
  • Field-Induced Phenomena in Two-Dimensional Weakly Anisotropic Heisenberg Antiferromagnets
  • 1. Introduction
  • 2. Effective, field-dependent anisotropies
  • 3. The phase diagram
  • 4. Random fields and domain walls (solitons)
  • 5. The spin flop transition
  • 6. The bicritical point
  • 7. Concluding remarks
  • Acknowledgements
  • References
  • Index of Names
  • Index of Chemical Compounds
  • Index of Subjects
  • 4.4. Excitations of the 2-d Heisenberg model
  • 4.5. Dipolar interactions
  • 5. Experimental layered magnets
  • 5.1. Ising layered magnets. ANNNI model: application to CeSb and CeBi
  • 5.2. Layered planar magnets
  • 5.3. Layered Heisenberg magnets
  • 6. Dynamics of 2-d magnets
  • 6.1. Equations of motion
  • 6.2. Spin-wave dynamics
  • 6.3. Spin-diffusion dynamics
  • 6.4. Dynamics of localized excitations
  • 6.5. Resonant paramagnetic cxcitation of vortex pairs
  • 6.6. Summary
  • Acknowledgement
  • References
  • Application of High- and Low-Temperature Series Expansions to Two-Dimensional Magnetic Systems
  • 1. Introduction
  • 1.1. Series expansions
  • 1.2. Methods applied in series analysis
  • 1.2.1. Ratio methods
  • 1.2.2. Padé approximant methods
  • 1.2.3. Other methods of series analysis
  • 2. Series expansions and predictions for the 2-d Isingmodel
  • 2.1. Spin 1/2 model with nearest neighbours only (simple 2-d lattices)
  • 2.1.1. High-temperature series
  • 5.2.5. Restricted dimensionality
  • 5.3. XY and Ising-Heisenberg models
  • Acknowledgements
  • References
  • Spin Waves in Two-Dimensional Magnetic Systems: Theory and Applications
  • 1. Introduction
  • 2. Magnetic structures and spin Hamiltonians
  • 3. Spin wave theory of model systems
  • 4. Dispersion relation
  • 5. Thermodynamic properties
  • 6. Impurities in antiferromagnets
  • References
  • Neutron Scattering Experiments on Two-Dimensional Heisenberg and Ising Magnets
  • 1. Introduction
  • 2. 2-d systems with Ising and Heisenberg interactions
  • 2.1. K2CoF4: a 2-d Ising system
  • 2.2. K2FeF4: a 2-d planar antiferromagnet
  • 2.3. K2MnF4 and K2NiF4: weakly anisotropic Heisenberg magnets
  • 2.4. Rb2CrCl4: a planar Heisenberg ferromagnet withsmall anisotropy
  • 2.5. K2CuF4: a planar Heisenberg ferromagnet
  • 3. 2-d random magnetic systems
  • 3.1. Phase transitions and critical phenomena
  • 3.2. Excitations
  • 3.3. Random field effects
  • 3.4. Relaxation front 2-d to 3-d order
  • 2.1.2. Low-temperature series
  • 2.1.3. Properties in nonzero parallel field
  • 2.1.4. Properties in nonzero perpendicular field
  • 2.2. Ising model with general S
  • 2.3. Other series for I (1/2)
  • 2.3.1. Restricted dimensionality systems
  • 2.3.2. Further-neighbour interactions
  • 2.3.3. Crossover from 2-d to 3-d behaviour
  • 3. Series expansions and predictions for the Heisenberg model
  • 3.1. Series for S = 1/2, arbitrary S and S = ?
  • 3.1.1. Properties at nonzero field
  • 3.2. Other series for the Heisenberg model
  • 3.2.1. Restricted dimensionality
  • 3.2.2. Further-neighbour interactions
  • 3.2.3. Crossover from 2-d to 3-d behaviour
  • 4. Series expansion in the X Y and Ising—Heisenberg models
  • 4.1. Series for the 2-d XY model
  • 4.2. Series for the 2-d Ising-Heisenberg model
  • 5. Applications to magnetic systems
  • 5.1. Ising model
  • 5.2. Heisenberg model
  • 5.2.1. Spin 1/2
  • 5.2.2. Spin 1
  • 5.2.3. Spin 3/2 and spin 2
  • 5.2.4. Spin 5/2
  • to Low-Dimensional Magnetic Systems
  • 1. Experimental realizations of 2-d magnetic systems
  • 2. Magnetic model Hamiltonians
  • 3. Survey of the predicted magnetic behaviour
  • 4. Lattice- and spin-dimensionality crossovers in quasi 2-d magnetic systems
  • 5. Magnetic and nonmagnetic impurity doping in quasi 2-d magnets
  • References
  • Theory of Two-Dimensional Magnets
  • 1. Introduction
  • 2. Ising magnets
  • 2.1. Ising model. Excitations and phase transitions
  • 2.2. Onsager solution
  • 2.3. Critical exponents and scaling
  • 2.4. Dual transformation. Order and disorder
  • 3. Planar magnets
  • 3.1. XY model
  • 3.2. Excitations
  • 3.3. Scaling and correlations
  • 3.4. Phase transition
  • 3.5. Magnetic vortices as a Coulomb gas
  • 3.6. Relationships with other models
  • 3.7. Planar antiferromagnets
  • 4. Heisenberg magnets
  • 4.1. Heisenberg model and real magnets
  • 4.2. Renormailzation of the temperature
  • 4.3. Heisenberg ferromagnets in an external magnetic field
  • 3.5. Competing anisotropics and interactions
  • 4. Triangular lattice antiferromagnet (TALAF)
  • 4.1. Fluctuations
  • 4.2. An additional degree of freedom
  • 4.3. Perturbation
  • 4.4. Quantum effect RbFeCl3 and CsFeCl3 VX2 (X = Cl, Br, I) AMX2 (A = Li, Na, K; M = 3d metal ion; X = O, S, Se)
  • References
  • Phase Transitions in Quasi Two-Dimensional Planar Magnets
  • 1. Introduction
  • 2. Phase transition and excitations in the 2-d XY model
  • 3. Crystallographic properties of BaM2(X)4)2 compounds
  • 4. Magnetic properties of BaNi2(PO4)2
  • 4.1. Static properties
  • 4.2. Dynamic properties
  • 4.3. Critical properties
  • 5. Magnetic properties of BaCo2(AsO4)2
  • 5.1. Static properties
  • 5.2. Magnetic phase diagrams
  • 5.3. Dynamic properties
  • 6. Magnetic properties of BaNi2(AsO4)2
  • 6.1. Static properties
  • 6.2. Dynamic properties
  • 7. Magnetic properties of BaCo2(PO4)2
  • 8. Other experimental realizations of the 2-d planar model
  • 8.1. K2CuF4