Magnetic Properties of Layered Transition Metal Compounds

In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single c...

Full description

Bibliographic Details
Other Authors: de Jongh, L.J. (Editor)
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 1990, 1990
Edition:1st ed. 1990
Series:Physics and Chemistry of Materials with Low-Dimensional Structures
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 09004nmm a2200421 u 4500
001 EB000711379
003 EBX01000000000000000564461
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9789400918603 
100 1 |a de Jongh, L.J.  |e [editor] 
245 0 0 |a Magnetic Properties of Layered Transition Metal Compounds  |h Elektronische Ressource  |c edited by L.J. de Jongh 
250 |a 1st ed. 1990 
260 |a Dordrecht  |b Springer Netherlands  |c 1990, 1990 
300 |a XIV, 422 p  |b online resource 
505 0 |a 8.2. NiCl2 and CoCL2 graphite intercalated compounds NiCl2-GIC CoCl2-GIC -- 9. Concluding remarks -- Acknowledgement -- References -- Spin Dynamics in the Paramagnetic Regime: NMR and EPR in Two-Dimensional Magnets -- 1. Introduction -- 1.1. Dynamics of the 2-spin correlation functions -- 1.2. Nuclear magnetic resonance (NMR) -- 1.3. Electron paramagnetic resonance (EPR) -- 2. General formalism -- 2.1. Diffusion and dimensionality -- 2.2. Cut-off and EPR linewidth -- 3. EPR spectrum -- 3.1. Diffusion of 4-spin correlation functions -- 3.2. Secular contribution D0 -- 3.3. Nonsecular contributions -- 3.4. Satellite line -- 4. Experiments on quasi 2-d Heisenberg magnets -- 4.1. NMR experiments -- 4.2. EPR experiments -- 4.2.1. Angular dependence of linewidth -- 4.2.2. Frequency dependence of magic angle linewidth -- 4.2.3. Dynamic shift -- 4.2.4. Lineshape of the main line -- 4.2.5. Satellite lines at half resonance field -- 5. Critical dynamcis --  
505 0 |a 5.1. Critical behaviour of the NMR line -- 5.1.1. Isotropic regime -- 5.1.2. Anisotropic regime -- 5.1.3. Experiments -- 5.2. Critical behaviour of the EPR linewidth -- 5.2.1. Ferromagnets -- 5.2.2. Antiferromagnets -- 5.3. AC susceptibility -- 6. Conclusions -- References -- Field-Induced Phenomena in Two-Dimensional Weakly Anisotropic Heisenberg Antiferromagnets -- 1. Introduction -- 2. Effective, field-dependent anisotropies -- 3. The phase diagram -- 4. Random fields and domain walls (solitons) -- 5. The spin flop transition -- 6. The bicritical point -- 7. Concluding remarks -- Acknowledgements -- References -- Index of Names -- Index of Chemical Compounds -- Index of Subjects 
505 0 |a 4.4. Excitations of the 2-d Heisenberg model -- 4.5. Dipolar interactions -- 5. Experimental layered magnets -- 5.1. Ising layered magnets. ANNNI model: application to CeSb and CeBi -- 5.2. Layered planar magnets -- 5.3. Layered Heisenberg magnets -- 6. Dynamics of 2-d magnets -- 6.1. Equations of motion -- 6.2. Spin-wave dynamics -- 6.3. Spin-diffusion dynamics -- 6.4. Dynamics of localized excitations -- 6.5. Resonant paramagnetic cxcitation of vortex pairs -- 6.6. Summary -- Acknowledgement -- References -- Application of High- and Low-Temperature Series Expansions to Two-Dimensional Magnetic Systems -- 1. Introduction -- 1.1. Series expansions -- 1.2. Methods applied in series analysis -- 1.2.1. Ratio methods -- 1.2.2. Padé approximant methods -- 1.2.3. Other methods of series analysis -- 2. Series expansions and predictions for the 2-d Isingmodel -- 2.1. Spin 1/2 model with nearest neighbours only (simple 2-d lattices) -- 2.1.1. High-temperature series --  
505 0 |a 5.2.5. Restricted dimensionality -- 5.3. XY and Ising-Heisenberg models -- Acknowledgements -- References -- Spin Waves in Two-Dimensional Magnetic Systems: Theory and Applications -- 1. Introduction -- 2. Magnetic structures and spin Hamiltonians -- 3. Spin wave theory of model systems -- 4. Dispersion relation -- 5. Thermodynamic properties -- 6. Impurities in antiferromagnets -- References -- Neutron Scattering Experiments on Two-Dimensional Heisenberg and Ising Magnets -- 1. Introduction -- 2. 2-d systems with Ising and Heisenberg interactions -- 2.1. K2CoF4: a 2-d Ising system -- 2.2. K2FeF4: a 2-d planar antiferromagnet -- 2.3. K2MnF4 and K2NiF4: weakly anisotropic Heisenberg magnets -- 2.4. Rb2CrCl4: a planar Heisenberg ferromagnet withsmall anisotropy -- 2.5. K2CuF4: a planar Heisenberg ferromagnet -- 3. 2-d random magnetic systems -- 3.1. Phase transitions and critical phenomena -- 3.2. Excitations -- 3.3. Random field effects -- 3.4. Relaxation front 2-d to 3-d order --  
505 0 |a 2.1.2. Low-temperature series -- 2.1.3. Properties in nonzero parallel field -- 2.1.4. Properties in nonzero perpendicular field -- 2.2. Ising model with general S -- 2.3. Other series for I (1/2) -- 2.3.1. Restricted dimensionality systems -- 2.3.2. Further-neighbour interactions -- 2.3.3. Crossover from 2-d to 3-d behaviour -- 3. Series expansions and predictions for the Heisenberg model -- 3.1. Series for S = 1/2, arbitrary S and S = ? -- 3.1.1. Properties at nonzero field -- 3.2. Other series for the Heisenberg model -- 3.2.1. Restricted dimensionality -- 3.2.2. Further-neighbour interactions -- 3.2.3. Crossover from 2-d to 3-d behaviour -- 4. Series expansion in the X Y and Ising—Heisenberg models -- 4.1. Series for the 2-d XY model -- 4.2. Series for the 2-d Ising-Heisenberg model -- 5. Applications to magnetic systems -- 5.1. Ising model -- 5.2. Heisenberg model -- 5.2.1. Spin 1/2 -- 5.2.2. Spin 1 -- 5.2.3. Spin 3/2 and spin 2 -- 5.2.4. Spin 5/2 --  
505 0 |a to Low-Dimensional Magnetic Systems -- 1. Experimental realizations of 2-d magnetic systems -- 2. Magnetic model Hamiltonians -- 3. Survey of the predicted magnetic behaviour -- 4. Lattice- and spin-dimensionality crossovers in quasi 2-d magnetic systems -- 5. Magnetic and nonmagnetic impurity doping in quasi 2-d magnets -- References -- Theory of Two-Dimensional Magnets -- 1. Introduction -- 2. Ising magnets -- 2.1. Ising model. Excitations and phase transitions -- 2.2. Onsager solution -- 2.3. Critical exponents and scaling -- 2.4. Dual transformation. Order and disorder -- 3. Planar magnets -- 3.1. XY model -- 3.2. Excitations -- 3.3. Scaling and correlations -- 3.4. Phase transition -- 3.5. Magnetic vortices as a Coulomb gas -- 3.6. Relationships with other models -- 3.7. Planar antiferromagnets -- 4. Heisenberg magnets -- 4.1. Heisenberg model and real magnets -- 4.2. Renormailzation of the temperature -- 4.3. Heisenberg ferromagnets in an external magnetic field --  
505 0 |a 3.5. Competing anisotropics and interactions -- 4. Triangular lattice antiferromagnet (TALAF) -- 4.1. Fluctuations -- 4.2. An additional degree of freedom -- 4.3. Perturbation -- 4.4. Quantum effect RbFeCl3 and CsFeCl3 VX2 (X = Cl, Br, I) AMX2 (A = Li, Na, K; M = 3d metal ion; X = O, S, Se) -- References -- Phase Transitions in Quasi Two-Dimensional Planar Magnets -- 1. Introduction -- 2. Phase transition and excitations in the 2-d XY model -- 3. Crystallographic properties of BaM2(X)4)2 compounds -- 4. Magnetic properties of BaNi2(PO4)2 -- 4.1. Static properties -- 4.2. Dynamic properties -- 4.3. Critical properties -- 5. Magnetic properties of BaCo2(AsO4)2 -- 5.1. Static properties -- 5.2. Magnetic phase diagrams -- 5.3. Dynamic properties -- 6. Magnetic properties of BaNi2(AsO4)2 -- 6.1. Static properties -- 6.2. Dynamic properties -- 7. Magnetic properties of BaCo2(PO4)2 -- 8. Other experimental realizations of the 2-d planar model -- 8.1. K2CuF4 --  
653 |a Physical chemistry 
653 |a Inorganic chemistry 
653 |a Condensed Matter Physics 
653 |a Physical Chemistry 
653 |a Inorganic Chemistry 
653 |a Materials / Analysis 
653 |a Characterization and Analytical Technique 
653 |a Condensed matter 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Physics and Chemistry of Materials with Low-Dimensional Structures 
028 5 0 |a 10.1007/978-94-009-1860-3 
856 4 0 |u https://doi.org/10.1007/978-94-009-1860-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 530.41 
520 |a In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics