Advanced Integration Theory

Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably nice (e.g., locally compact with countable...

Full description

Bibliographic Details
Main Authors: Constantinescu, Corneliu, Filter, Wolfgang (Author), Weber, Karl (Author)
Format: eBook
Language:English
Published: Dordrecht Springer Netherlands 1998, 1998
Edition:1st ed. 1998
Series:Mathematics and Its Applications
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 04282nmm a2200397 u 4500
001 EB000710446
003 EBX01000000000000000563528
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9789400708525 
100 1 |a Constantinescu, Corneliu 
245 0 0 |a Advanced Integration Theory  |h Elektronische Ressource  |c by Corneliu Constantinescu, Wolfgang Filter, Karl Weber 
250 |a 1st ed. 1998 
260 |a Dordrecht  |b Springer Netherlands  |c 1998, 1998 
300 |a XXIV, 876 p  |b online resource 
505 0 |a Suggestion to the Reader -- 0 Preliminaries -- Vector Lattices -- 1.1 Ordered Vector Spaces -- 1.2 Vector Lattices -- 1.3 Substructures, Quotients, Products -- 1.4 Bands and Orthogonality -- 1.5 Homomorphisms -- 1.6 The Order Dual of a Vector Lattice -- 1.7 Continuous Functionals -- 1.8 Order and Topology -- 1.9 Metric Spaces and Banach Spaces -- 1.10 Banach Lattices -- 1.11 Hilbert Lattices -- 1.12 Lattice Products -- Elementary Integration Theory -- 2.1 Riesz Lattices -- 2.2 Daniell Spaces -- 2.3 The Closure of a Daniell Space -- 2.4 The Integral for a Daniell Space -- 2.5 Systems of Sets, Step Functions, and Stone Lattices -- 2.6 Positive Measures -- 2.7 Closure, Completion, and Integrals for Positive Measure Spaces -- 2.8 Measurable Spaces and Measurability -- 2.9 Measurability versus Integrability -- 2.10 Stieltjes Functionals and Stieltjes Measures. Lebesgue Measure -- 3 Lp-Spaces -- 3.1 Classes modulo ?, and Convergence in Measure -- 3.2 The Hölder and Minkowski Inequalities and the Lp-Spaces -- 3.3 Lp-Spaces for 0< p< ? -- 3.4 Uniform integrability and the Generalized Lebesgue Convergence Theorem -- 3.5 Localization -- 3.6 Products and Lp? -- Real Measures -- 4.1 Nullcontinuous Functionals -- 4.2 Real Measures and Spaces of Real Measures -- 4.3 Integrals for Real Measures -- 4.4 Bounded Measures -- 4.5 Atomic and Atomless Measures -- The Radon-Nikodym Theorem. Duality -- 5.1 Absolute Continuity -- 5.2 The Theorem of Radon-Nikodym -- 5.3 Duality for Function Spaces -- 6 The Classical Theory of Real Functions -- 6.1 Functions of Locally Finite Variation -- 6.2 Real Stieltjes Measures -- 6.3 Absolutely Continuous Functions -- 6.4 Vitali?s Covering Theorem -- 6.5 Differentiable Functions -- 6.6 Spaces of Multiply Differentiable Functions -- 6.7 Riemann-Stieltjes Integrals -- Historical Remarks -- Name Index.-Symbol Index 
653 |a Measure theory 
653 |a Mathematical analysis 
653 |a Functions of real variables 
653 |a Probability Theory 
653 |a Integral Transforms and Operational Calculus 
653 |a Algebra 
653 |a Real Functions 
653 |a Order, Lattices, Ordered Algebraic Structures 
653 |a Measure and Integration 
653 |a Probabilities 
700 1 |a Filter, Wolfgang  |e [author] 
700 1 |a Weber, Karl  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Mathematics and Its Applications 
028 5 0 |a 10.1007/978-94-007-0852-5 
856 4 0 |u https://doi.org/10.1007/978-94-007-0852-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.42 
520 |a Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably nice (e.g., locally compact with countable basis) the abstract theory and the topological theory yield the same results, but for more compli­ cated spaces the topological theory gives stronger results than those provided by the abstract theory. The possibility of resolving this split fascinated us, and it was one of the reasons for writing this book. The unification of the abstract theory and the topological theory is achieved by using new definitions in the abstract theory. The integral in this book is de­ fined in such a way that it coincides in the case of Radon measures on Hausdorff spaces with the usual definition in the literature. As a consequence, our integral can differ in the classical case. Our integral, however, is more inclusive. It was defined in the book "C. Constantinescu and K. Weber (in collaboration with A.