Compact Transistor Modelling for Circuit Design

During the first decade following the invention of the transistor, progress in semiconductor device technology advanced rapidly due to an effective synergy of technological discoveries and physical understanding. Through physical reasoning, a feeling for the right assumption and the correct interpre...

Full description

Bibliographic Details
Main Authors: Graaff, Henk C. de, Klaassen, Francois M. (Author)
Format: eBook
Language:English
Published: Vienna Springer Vienna 1990, 1990
Edition:1st ed. 1990
Series:Computational Microelectronics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Table of Contents:
  • 1 Introduction
  • 1.1 Compact Models
  • 1.2 Compact Models and Simulation Programs
  • 1.3 Subjects Treated in This Book
  • References
  • 2 Some Basic Semiconductor Physics
  • 2.1 Quantum-Mechanical Concepts
  • 2.2 Distribution Function and Carrier Concentration
  • 2.3 The Boltzmann Transport Equation
  • 2.4 Bandgap Narrowing
  • 2.5 Mobility and Resistivity in Silicon
  • 2.6 Recombination
  • 2.7 Avalanche Multplication
  • 2.8 Noise Sources
  • References
  • 3 Modelling of Bipolar Device Phenomena
  • 3.1 Injection and Transport Models
  • 3.2 The Quasi-Static Approximation and the Charge Control Principle
  • 3.3 Collector Currents and Stored Charges
  • 3.4 Base Currents
  • 3.5 Depletion Charges and Capacitances
  • 3.6 Early Effect
  • 3.7 Quasi-Saturation, Base Widening and Kirk Effect
  • 3.8 Avalanche Multiplication
  • 3.9 Series Resistances
  • 3.10 Time- and Frequency-Dependent Behaviour
  • 3.11 Transit Time and Cut-Off Frequency fT
  • 3.12 Noise Behaviour
  • 9.1 The Drain Current of the Junction-Gate FET
  • 9.2 The Drain Current of the MESFET
  • 9.3 Charges and Capacitances
  • References
  • 10 Parameter Determination
  • 10.1 General Optimization Method
  • 10.2 Specific Bipolar Measurements
  • 10.3 Example of Parameter Extraction for a Bipolar Transistor Model
  • 10.4 Parameter Determination for MOSFETs
  • 10.5 Specific MOSFET Measurements
  • References
  • 11 Process and Geometry Dependence, Optimization and Statistics of Parameters
  • 11.1 Unity Parameters and Geometrical Scaling in Bipolar Modelling
  • 11.2 Bipolar Process Blocks and Circuit Optimization
  • 11.3 Geometry- and Process Dependence of MOSFET Parameters
  • 11.4 Statistics: Definitions and Formulas
  • 11.5 Bipolar Statistical Modelling
  • 11.6 MOS Statistical Modelling
  • References
  • 3.13 Temperature Dependences
  • References
  • 4 Compact Models for Vertical Bipolar Transistors
  • 4.1 Ebers-Moll-Type Models
  • 4.2 Gummel-Poon-Type Models
  • 4.3 The MEXTRAM Model
  • 4.4 Short Review
  • References
  • 5 Lateral pnp Transistor Models
  • 5.1 Model Definitions
  • 5.2 Results
  • 5.3 Shortcomings of Existing Models
  • References
  • 6 MOSFET Physics Relevant to Device Modelling
  • 6.1 Formation of the Inversion Layer
  • 6.2 The Ideal MOS Transistor Current
  • 6.3 The Threshold Voltage
  • 6.4 Carrier Mobility in Inversion Layers
  • 6.5 Saturation Mode
  • 6.6 Dynamic Operation
  • 6.7 Intrinsic Parasitics
  • References
  • 7 Models for the Enhancement-Type MOSFET
  • 7.1 Long-Channel Models
  • 7.2 Small Transistor Models
  • 7.3 Models for Analog Applications
  • References
  • 8 Models for the Depletion-Type MOSFET
  • 8.1 Long-Channel Model
  • 8.2 Short-Channel Model.-8.3 Charges and Charge Distribution
  • References
  • 9 Models for the JFET and the MESFET