Quantum Optics Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence

Quantum Optics gives a very broad coverage of basic laser-related phenomena that allow scientists and engineers to carry out research in quantum optics and laser physics. It covers the quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fl...

Full description

Bibliographic Details
Main Author: Orszag, Miguel
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2000, 2000
Edition:1st ed. 2000
Series:Advanced Texts in Physics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Table of Contents:
  • 1. Einstein’s Theory of Atom—Radiation Interaction
  • 2. Atom—Field Interaction: Semiclassical Approach
  • 3. Quantization of the Electromagnetic Field
  • 4. States of the Electromagnetic Field I
  • 5. States of the Electromagnetic Field II
  • 6. Quantum Theory of Coherence
  • 7. Phase Space Description
  • 8. Atom—Field Interaction
  • 9. System—Reservoir Interactions
  • 10. Resonance Fluorescence
  • 11. Quantum Laser Theory. Master Equation Approach
  • 12. Quantum Laser Theory. Langevin Approach
  • 13. Quantum Noise Reduction I
  • 14. Quantum Noise Reduction II
  • 15. Quantum Phase
  • 16. Quantum Trajectories
  • 17. Atom Optics
  • 18. Measurements, Quantum Limits and all That
  • 19. Trapped Ions
  • 20. Decoherence
  • A. Operator Relations
  • A.1 Theorem 1
  • A.2 Theorem 2. The Baker—Campbell—Haussdorf Relation
  • A.3 Theorem 3. Similarity Transformation
  • B. The Method of Characteristics
  • C. Proof of Eq. (12.37)
  • D. Stochastic Processes in a Nutshell
  • D.1 Introduction
  • D.2 Probability Concepts
  • D.3 Stochastic Processes
  • D.3.1 The Chapman—Kolmogorov Equation
  • D.4 The Fokker—Planck Equation
  • D.4.1 The Wiener Process
  • D.4.2 General Properties of the Fokker—Planck Equation
  • D.4.3 Steady State Solution
  • D.5 Stochastic Differential Equations
  • D.5.1 Ito versus Stratonovich Calculus
  • D.5.2 Ito’s Formula
  • D.6 Approximate Methods
  • E. Derivation of the Homodyne Stochastic
  • Schrödinger Differential Equation
  • F. Fluctuations
  • Hints for Solutions of Problems
  • References