Quantum Optics Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence

Quantum Optics gives a very broad coverage of basic laser-related phenomena that allow scientists and engineers to carry out research in quantum optics and laser physics. It covers the quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fl...

Full description

Bibliographic Details
Main Author: Orszag, Miguel
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2000, 2000
Edition:1st ed. 2000
Series:Advanced Texts in Physics
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
LEADER 03391nmm a2200301 u 4500
001 EB000686545
003 EBX01000000000000000539627
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140122 ||| eng
020 |a 9783662041147 
100 1 |a Orszag, Miguel 
245 0 0 |a Quantum Optics  |h Elektronische Ressource  |b Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence  |c by Miguel Orszag 
250 |a 1st ed. 2000 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2000, 2000 
300 |a XVII, 361 p. 14 illus  |b online resource 
505 0 |a 1. Einstein’s Theory of Atom—Radiation Interaction -- 2. Atom—Field Interaction: Semiclassical Approach -- 3. Quantization of the Electromagnetic Field -- 4. States of the Electromagnetic Field I -- 5. States of the Electromagnetic Field II -- 6. Quantum Theory of Coherence -- 7. Phase Space Description -- 8. Atom—Field Interaction -- 9. System—Reservoir Interactions -- 10. Resonance Fluorescence -- 11. Quantum Laser Theory. Master Equation Approach -- 12. Quantum Laser Theory. Langevin Approach -- 13. Quantum Noise Reduction I -- 14. Quantum Noise Reduction II -- 15. Quantum Phase -- 16. Quantum Trajectories -- 17. Atom Optics -- 18. Measurements, Quantum Limits and all That -- 19. Trapped Ions -- 20. Decoherence -- A. Operator Relations -- A.1 Theorem 1 -- A.2 Theorem 2. The Baker—Campbell—Haussdorf Relation -- A.3 Theorem 3. Similarity Transformation -- B. The Method of Characteristics -- C. Proof of Eq. (12.37) -- D. Stochastic Processes in a Nutshell -- D.1 Introduction -- D.2 Probability Concepts -- D.3 Stochastic Processes -- D.3.1 The Chapman—Kolmogorov Equation -- D.4 The Fokker—Planck Equation -- D.4.1 The Wiener Process -- D.4.2 General Properties of the Fokker—Planck Equation -- D.4.3 Steady State Solution -- D.5 Stochastic Differential Equations -- D.5.1 Ito versus Stratonovich Calculus -- D.5.2 Ito’s Formula -- D.6 Approximate Methods -- E. Derivation of the Homodyne Stochastic -- Schrödinger Differential Equation -- F. Fluctuations -- Hints for Solutions of Problems -- References 
653 |a Quantum Optics 
653 |a Laser 
653 |a Lasers 
653 |a Quantum optics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b SBA  |a Springer Book Archives -2004 
490 0 |a Advanced Texts in Physics 
028 5 0 |a 10.1007/978-3-662-04114-7 
856 4 0 |u https://doi.org/10.1007/978-3-662-04114-7?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 535.15 
520 |a Quantum Optics gives a very broad coverage of basic laser-related phenomena that allow scientists and engineers to carry out research in quantum optics and laser physics. It covers the quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin approach, the correlated-emission laser, input-output theory with application in nonlinear optics, quantum trajectories, atom optics, quantum non-demolition measurements and generation of non-classsical vibrational states of ions in a Paul trap. These topics are presented in a unified and didactic manner. The presentation of the book is clear and pedagogical; it balances the theoretical aspects of the optical phenomena with recent relevant experiments