Numerical Operations with Polynomial Matrices Application to Multi-Variable Dynamic Compensator Design

The purpose of this monograph is to describe a class of com- putational methods, based on polynomial matrices, for the design of dynamic compensators for linear multi-variable control systems. The design of the compensator, which may be either analogue or digital, is based on pole assignment. A matr...

Full description

Bibliographic Details
Main Authors: Stefanidis, Peter, Paplinski, Andrzej P. (Author), Gibbard, Michael J. (Author)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1992, 1992
Edition:1st ed. 1992
Series:Lecture Notes in Control and Information Sciences
Subjects:
Online Access:
Collection: Springer Book Archives -2004 - Collection details see MPG.ReNa
Description
Summary:The purpose of this monograph is to describe a class of com- putational methods, based on polynomial matrices, for the design of dynamic compensators for linear multi-variable control systems. The design of the compensator, which may be either analogue or digital, is based on pole assignment. A matrix fraction description, which employs polynomial matri- ces, is used to represent the system. The design comptuta- tion, however, employs matrices of real numbers rather than polynomial matrices. This simplifies the computational pro- cedures which can thus be implementedin commercially-avai- lable software packages. Both transient and steady-state performace specifications are included in the design proce- dure which is illustrated by four detailed examples. The monograph should be of interest to research workers and engineers in the field fo multi-variable control. For the former it provides some new computational tools for the ap- plication of algebraic methods, for both groups it introdu- ces some new ideas for a more-direct approach to compensator design
Physical Description:VIII, 209 p. 1 illus online resource
ISBN:9783540466338