Fluctuation Theory for Lévy Processes Ecole d'Eté de Probabilités de Saint-Flour XXXV - 2005

Lévy processes, i.e. processes in continuous time with stationary and independent increments, are named after Paul Lévy, who made the connection with infinitely divisible distributions and described their structure. They form a flexible class of models, which have been applied to the study of storag...

Full description

Main Author: Doney, Ronald A.
Corporate Author: SpringerLink (Online service)
Other Authors: Picard, Jean (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2007, 2007
Edition:1st ed. 2007
Series:École d'Été de Probabilités de Saint-Flour
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Summary:Lévy processes, i.e. processes in continuous time with stationary and independent increments, are named after Paul Lévy, who made the connection with infinitely divisible distributions and described their structure. They form a flexible class of models, which have been applied to the study of storage processes, insurance risk, queues, turbulence, laser cooling, ... and of course finance, where the feature that they include examples having "heavy tails" is particularly important. Their sample path behaviour poses a variety of difficult and fascinating problems. Such problems, and also some related distributional problems, are addressed in detail in these notes that reflect the content of the course given by R. Doney in St. Flour in 2005
Physical Description:IX, 155 p online resource
ISBN:9783540485117