Fluctuation Theory for Lévy Processes : Ecole d'Eté de Probabilités de Saint-Flour XXXV - 2005

Lévy processes, i.e. processes in continuous time with stationary and independent increments, are named after Paul Lévy, who made the connection with infinitely divisible distributions and described their structure. They form a flexible class of models, which have been applied to the study of storag...

Full description

Main Author: Doney, Ronald A.
Corporate Author: SpringerLink (Online service)
Other Authors: Picard, Jean (Editor)
Format: eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 2007, 2007
Edition:1st ed. 2007
Series:École d'Été de Probabilités de Saint-Flour
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02145nmm a2200301 u 4500
001 EB000377240
003 EBX01000000000000000230292
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783540485117 
100 1 |a Doney, Ronald A. 
245 0 0 |a Fluctuation Theory for Lévy Processes  |h Elektronische Ressource  |b Ecole d'Eté de Probabilités de Saint-Flour XXXV - 2005  |c by Ronald A. Doney ; edited by Jean Picard 
250 |a 1st ed. 2007 
260 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2007, 2007 
300 |a IX, 155 p  |b online resource 
505 0 |a to Lévy Processes -- Subordinators -- Local Times and Excursions -- Ladder Processes and the Wiener–Hopf Factorisation -- Further Wiener–Hopf Developments -- Creeping and Related Questions -- Spitzer's Condition -- Lévy Processes Conditioned to Stay Positive -- Spectrally Negative Lévy Processes -- Small-Time Behaviour 
653 |a Probability Theory and Stochastic Processes 
653 |a Probabilities 
700 1 |a Picard, Jean  |e [editor] 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a École d'Été de Probabilités de Saint-Flour 
856 |u https://doi.org/10.1007/978-3-540-48511-7?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 519.2 
520 |a Lévy processes, i.e. processes in continuous time with stationary and independent increments, are named after Paul Lévy, who made the connection with infinitely divisible distributions and described their structure. They form a flexible class of models, which have been applied to the study of storage processes, insurance risk, queues, turbulence, laser cooling, ... and of course finance, where the feature that they include examples having "heavy tails" is particularly important. Their sample path behaviour poses a variety of difficult and fascinating problems. Such problems, and also some related distributional problems, are addressed in detail in these notes that reflect the content of the course given by R. Doney in St. Flour in 2005