Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the se...

Full description

Bibliographic Details
Main Authors: Takács, Gergely, Rohaľ-Ilkiv, Boris (Author)
Format: eBook
Language:English
Published: London Springer London 2012, 2012
Edition:1st ed. 2012
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03746nmm a2200445 u 4500
001 EB000363080
003 EBX01000000000000000216132
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9781447123330 
100 1 |a Takács, Gergely 
245 0 0 |a Model Predictive Vibration Control  |h Elektronische Ressource  |b Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures  |c by Gergely Takács, Boris Rohaľ-Ilkiv 
250 |a 1st ed. 2012 
260 |a London  |b Springer London  |c 2012, 2012 
300 |a XXXVIII, 518 p  |b online resource 
505 0 |a 1. Introduction -- 2. Basics of Vibration Dynamics -- 3. Smart Materials in Active Vibration Control -- 4. Algorithms in Active Vibration Control -- 5. Laboratory Demonstration Hardware for AVC -- 6. Basic MPC Formulation -- 7. Stability and Feasibility of MPC -- 8. Efficient MPC Algorithms -- 9. Applications of Model Predictive Vibration Control -- 10. MPC Implementation for Vibration Control -- 11. Simulation Study of Model Predictive Vibration Control -- 12. Experimental Model Predictive Vibration Control -- A. FE Modeling of the Active Structure -- B. MPC Code Implementation Details 
653 |a Mechanics, Applied 
653 |a Computational intelligence 
653 |a Control and Systems Theory 
653 |a Computational Mathematics and Numerical Analysis 
653 |a Mathematics / Data processing 
653 |a Control theory 
653 |a Systems Theory, Control 
653 |a Computational Intelligence 
653 |a Multibody Systems and Mechanical Vibrations 
653 |a System theory 
653 |a Vibration 
653 |a Control engineering 
653 |a Mathematical Modeling and Industrial Mathematics 
653 |a Multibody systems 
653 |a Mathematical models 
700 1 |a Rohaľ-Ilkiv, Boris  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
028 5 0 |a 10.1007/978-1-4471-2333-0 
856 4 0 |u https://doi.org/10.1007/978-1-4471-2333-0?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 629.8312 
082 0 |a 003 
520 |a Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of computationally efficient algorithms ·         control strategies in simulation and experiment and ·         typical hardware requirements for piezoceramics actuated smart structures.   The use of a simple laboratory model and inclusion of over 170  illustrations provides readers with clear and methodical explanations, making Model Predictive Vibration Control the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation.