Timing Optimization Through Clock Skew Scheduling

Timing Optimization Through Clock Skew Scheduling focuses on optimizing the timing of large scale, high performance, digital synchronous systems. A particular emphasis is placed on algorithms for non-zero clock skew scheduling to improve the performance and reliability of VLSI circuits. This researc...

Full description

Bibliographic Details
Main Authors: Kourtev, Ivan S., Taskin, Baris (Author), Friedman, Eby G. (Author)
Format: eBook
Language:English
Published: New York, NY Springer US 2009, 2009
Edition:1st ed. 2009
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:Timing Optimization Through Clock Skew Scheduling focuses on optimizing the timing of large scale, high performance, digital synchronous systems. A particular emphasis is placed on algorithms for non-zero clock skew scheduling to improve the performance and reliability of VLSI circuits. This research monograph answers the need for a broad introduction to state-of-the-art clock skew scheduling algorithms from a circuit, graph, and mathematical optimization background. A detailed description of clock skew scheduling application on edge-triggered and level-sensitive circuits, synchronized with single and multi-phase clocking schemes, and formulated as linear programming (LP) and quadratic programming (QP) formulations are provided along with an analysis of optimal computer solution techniques. Theoretical limits of improvement in clock frequency through clock skew scheduling are highlighted. Hints and a preliminary implementation of a parallel skew scheduling application are also included. Timing Optimization Through Clock Skew Scheduling contains sufficient detail for the advanced CAD algorithm developer, researcher and graduate student. Furthermore, with the material provided on timing properties and optimization, those readers with less background can also benefit from this book
Physical Description:XVI, 266 p online resource
ISBN:9780387710563