Electric circuit analysis

Electric circuit Analysis is designed to serve as a textbook for undergraduate course on basic electric circuits. The book builds on the subject from its basic principles. Spread over fourteen chapters, the book can be taught with varying degree of emphasis based on the course requirement. Written i...

Full description

Bibliographic Details
Main Author: Suresh Kumar, K. S.
Format: eBook
Language:English
Published: Chennai Pearson 2013
Edition:[First edition]
Series:Always learning
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
LEADER 09233nmm a2200505 u 4500
001 EB002213697
003 EBX01000000000000001350658
005 00000000000000.0
007 cr|||||||||||||||||||||
008 240604 ||| eng
020 |a 9332521530 
020 |a 1306254299 
020 |a 9789332521537 
020 |a 9332514100 
020 |a 9788131791554 
020 |a 9332513872 
020 |a 9789332514102 
020 |a 9789332513877 
020 |a 9781306254298 
050 4 |a TK454 
100 1 |a Suresh Kumar, K. S. 
245 0 0 |a Electric circuit analysis  |c K.S. Suresh Kumar 
250 |a [First edition] 
260 |a Chennai  |b Pearson  |c 2013 
300 |a 729 pages  |b illustrations 
505 0 |a 8.4.1 Unbalanced Y-Y Circuit -- 8.4.2 Circulating Current in Unbalanced Delta-connected Sources -- 8.5 Symmetrical Components -- 8.5.1 Three-Phase Circuits with Unbalanced Sources and Balanced Loads -- 8.5.2 The Zero Sequence Component -- 8.5.3 Active Power in Sequence Components -- 8.5.4 Three-Phase Circuits with Balanced Sources and Unbalanced Loads -- 8.6 Summary -- 8.7 Problems -- Chapter 9 : Dynamic Circuits with Periodic Inputs -Analysis by Fourier Series -- 9.1 Periodic Waveforms in Circuit Analysis -- 9.1.1 The Sinusoidal Steady-State Frequency Response Function -- 9.2 The Exponential Fourier Series -- 9.3 Trigonometric Fourier Series -- 9.4 Conditions for Existence of Fourier Series -- 9.5 Waveform Symmetry and Fourier Series Coefficients -- 9.6 Properties of Fourier Series and Some Examples -- 9.7 Discrete Magnitude and Phase Spectrum -- 9.8 Rate of Decay of Harmonic Amplitude -- 9.9 Analysis of Periodic Steady-State Using Fourier Series -- 9.10 Normalised Power in a Periodic Waveform and Parseval's Theorem -- 9.11 Power and Power Factor in AC System with Distorted Waveforms -- 9.12 Summary -- 9.13 Problems -- Chapter 10 : First-Order RL Circuits -- 10.1 The Series RL Circuit -- 10.1.1 The Series RL Circuit Equations -- 10.1.2 Need for Initial Condition Specification -- 10.1.3 Sufficiency of Initial Condition -- 10.2 Series RL Circuit with Unit Step Input -- Qualitative Analysis -- 10.2.1 From t = 0- to t = 0 + -- 10.2.2 Inductor Current Growth Process -- 10.3 Step Response of RL Circuit by Solving Differential Equation -- 10.3.1 Interpreting the Input Forcing Functions in Circuit Differential Equations -- 10.3.2 Complementary Function and Particular Integral -- 10.3.3 Series RL Circuit Response in DC Voltage Switching Problem -- 10.4 Features of RL Circuit Step Response -- 10.4.1 Step Response Waveforms in Series RL Circuit 
505 0 |a 4.4.1 Source Transformation Theorem -- 4.4.2 Applying Source Transformation in Nodal Analysis of Circuits -- 4.5 Nodal Analysis of Circuits Containing Dependent Current Sources -- 4.6 Nodal Analysis of Circuits Containing Dependent Voltage Sources -- 4.7 Mesh Analysis of Circuits with Resistors and Independent Voltage Sources -- 4.7.1 Principle of Mesh Analysis -- 4.7.2 Is Mesh Current Measurable? -- 4.8 Mesh Analysis of Circuits with Independent Current Sources -- 4.9 Mesh Analysis of Circuits Containing Dependent Sources -- 4.10 Summary -- 4.11 Problems -- Chapter 5 : Circuit Theorems -- 5.1 Linearity of a Circuit and Superposition Theorem -- 5.1.1 Linearity of a Circuit -- 5.2 Star-Delta Transformation Theorem -- 5.3 Substitution Theorem -- 5.4 Compensation Theorem -- 5.5 Thevenin's Theorem and Norton's Theorem -- 5.6 Determination of Equivalents for Circuits with Dependent Sources -- 5.7 Reciprocity Theorem -- 5.8 Maximum Power Transfer Theorem -- 5.9 Millman's Theorem -- 5.10 Summary -- 5.11 Problems -- Chapter 6 : Power and Energy in Periodic Waveforms -- 6.1 Why Sinusoids? -- 6.2 The Sinusoidal Source Function -- 6.2.1 Amplitude, Period, Cyclic Frequency, Angular Frequency -- 6.2.2 Phase of a Sinusoidal Waveform -- 6.2.3 Phase Difference Between Two Sinusoids -- 6.2.4 Lag or Lead? -- 6.2.5 Phase Lag/Lead Versus Time Delay/Advance -- 6.3 Instantaneous Power in Periodic Waveforms -- 6.4 Average Power in Periodic Waveforms -- 6.5 Effective Value (RMS Value) of Periodic Waveforms -- 6.5.1 RMS Value of Sinusoidal Waveforms -- 6.6 The Power Superposition Principle -- 6.6.1 RMS Value of a Composite Waveform -- 6.7 Summary -- 6.8 Problems -- Chapter 7 : The Sinusoidal Steady-State Response -- 7.1 Transient State and Steady-State in Circuits -- 7.1.1 Governing Differential Equation of Circuits -- Examples 
505 0 |a 2.2 Kirchhoff's Current Law -- 2.3 Interconnections of Ideal Sources -- 2.4 Analysis of a Single-Loop Circuit -- 2.5 Analysis of a Single-Node-Pair Circuit -- 2.6 Analysis of Multi-Loop, Multi-Node Circuits -- 2.7 KVL and KCL in Operational Amplifier Circuits -- 2.7.1 The Practical Operational Amplifier -- 2.7.2 Negative Feedback in Operational Amplifier Circuits -- 2.7.3 The Principles of 'Virtual Short' and 'Zero Input Current' -- 2.7.4 Analysis of Operational Amplifier Circuits Using the IOA Model -- 2.8 Summary -- 2.9 Problems -- Chapter 3 : Single Element Circuits -- 3.1 The Resistor -- 3.1.1 Series Connection of Resistors -- 3.1.2 Parallel Connection of Resistors -- 3.2 The Inductor -- 3.2.1 Instantaneous Inductor Current versus Instantaneous Inductor Voltage -- 3.2.2 Change in Inductor Current Function versus Area under Voltage Function -- 3.2.3 Average Applied Voltage for a Given Change in Inductor Current -- 3.2.4 Instantaneous Change in Inductor Current -- 3.2.5 Inductor with Alternating Voltage Across it -- 3.2.6 Inductor with Exponential and Sinusoidal Voltage Input -- 3.2.7 Linearity of Inductor -- 3.2.8 Energy Storage in an Inductor -- 3.3 Series Connection of Inductors -- 3.4 Parallel Connection of Inductors -- 3.5 The Capacitor -- 3.6 Series Connection of Capacitors -- 3.6.1 Series Connection of Capacitors with Zero Initial Energy -- 3.6.2 Series Connection of Capacitors with Non-zero Initial Energy -- 3.7 Parallel Connection of Capacitors -- 3.8 Summary -- 3.9 Problems -- Chapter 4 : Nodal Analysis and Mesh Analysis of Memoryless Circuits -- 4.1 The Circuit Analysis Problem -- 4.2 Nodal Analysis of Circuits Containing Resistors and Independent Current Sources -- 4.3 Nodal Analysis of Circuits Containing Independent Voltage Sources -- 4.4 Source Transformation Theorem and its Use in Nodal Analysis 
505 0 |a Cover -- Dedication -- Brief Contents -- Contents -- Preface -- Acknowledgements -- Chapter 1 : Circuit Variables and Circuit Elements -- 1.1 Electromotive Force, Potential and Voltage -- 1.1.1 Force Between Two Moving Point Charges and Retardation Effect -- 1.1.2 Electric Potential and Voltage -- 1.1.3 Electromotive Force and Terminal Voltage of a Steady Source -- 1.2 A Voltage Source with a Resistance Connected at its Terminals -- 1.2.1 Steady-State Charge Distribution in the System -- 1.2.2 Drift Velocity and Current Density -- 1.2.3 Current Intensity -- 1.2.4 Conduction and Energy Transfer Process -- 1.2.5 Two-Terminal Resistance Element -- 1.2.6 A Time-Varying Voltage Source with Resistance Across it -- 1.3 Two-Terminal Capacitance -- 1.4 Two-Terminal Inductance -- 1.4.1 Induced Electromotive Force and its Location in a Circuit -- 1.4.2 Relation between induced electromotive force and current -- 1.4.3 Farady's Law and Induced Electromotive Force -- 1.4.4 The Issue of a Unique Voltage Across a Two-Terminal Element -- 1.4.5 The Two-Terminal Inductance -- 1.5 Ideal Independent Two-Terminal Electrical Sources -- 1.5.1 Ideal Independent Voltage Source -- 1.5.2 Ideal Independent Current Source -- 1.5.3 Ideal Short-Circuit Element and Ideal Open-Circuit Element -- 1.6 Power and Energy Relations for Two-Terminal Elements -- 1.6.1 Passive Sign Convention -- 1.6.2 Power and Energy in Two-Terminal Elements -- 1.7 Classification of Two-Terminal Elements -- 1.7.1 Lumped and Distributed Elements -- 1.7.2 Linear and Non-linear Elements -- 1.7.3 Bilateral and Non-Bilateral Elements -- 1.7.4 Passive and Active Elements -- 1.7.5 Time-Invariant and Time-Variant Elements -- 1.8 Multi-Terminal Circuit Elements -- 1.8.1 Ideal Dependent Sources -- 1.9 Summary -- 1.10 Problems -- Chapter 2 : Basic Circuit Laws -- 2.1 Kirchhoff's Voltage Law (KVL) 
653 |a Electric circuit analysis / Problems, exercises, etc 
653 |a Electric circuit analysis / fast 
653 |a Circuits électriques / Analyse / Problèmes et exercices 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OREILLY  |a O'Reilly 
490 0 |a Always learning 
500 |a Includes index 
776 |z 9788131791554 
776 |z 9789332514102 
776 |z 9332514100 
776 |z 8131791556 
776 |z 1306254299 
776 |z 9781306254298 
856 4 0 |u https://learning.oreilly.com/library/view/~/9789332514102/?ar  |x Verlag  |3 Volltext 
082 0 |a 621.319/2 
520 |a Electric circuit Analysis is designed to serve as a textbook for undergraduate course on basic electric circuits. The book builds on the subject from its basic principles. Spread over fourteen chapters, the book can be taught with varying degree of emphasis based on the course requirement. Written in a student-friendly manner, its narrative style places adequate stress on the principles that govern the behaviour of electric circuits