Finishing Operations to Enhance Surface Integrity of Parts

Surface integrity management is remarkably important when metal alloys are used to manufacture relevant parts. Advanced materials such as titanium, nickel alloys, non-ferrous alloys, or special steels make surface integrity preservation after machining particularly difficult. Consequently, thorough...

Full description

Bibliographic Details
Main Author: Dessein, Gilles
Other Authors: Travieso-Rodriguez, J. Antonio
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04651nma a2201057 u 4500
001 EB002195084
003 EBX01000000000000001332549
005 00000000000000.0
007 cr|||||||||||||||||||||
008 240202 ||| eng
020 |a books978-3-0365-9285-5 
020 |a 9783036592848 
020 |a 9783036592855 
100 1 |a Dessein, Gilles 
245 0 0 |a Finishing Operations to Enhance Surface Integrity of Parts  |h Elektronische Ressource 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (182 p.) 
653 |a material removal rate 
653 |a process monitoring 
653 |a tool wear 
653 |a mixture design 
653 |a vapor smoothing 
653 |a ball burnishing 
653 |a PEI Ultem 9085 
653 |a ultrasonic 
653 |a regular reliefs 
653 |a austenitic stainless steel 
653 |a microhardness 
653 |a honing 
653 |a acoustic emission 
653 |a X6CrNiTi18 stainless steel 
653 |a History of engineering and technology / bicssc 
653 |a friction coefficient 
653 |a postprocessing 
653 |a Bayesian rule 
653 |a operational deflection shape 
653 |a surface enhancement 
653 |a positron mean lifetime τmean 
653 |a Technology: general issues / bicssc 
653 |a piezoelectric 
653 |a fatigue life 
653 |a additive manufacturing 
653 |a residual stresses 
653 |a part quality 
653 |a finishing operations 
653 |a precision spheres 
653 |a roughness 
653 |a vibration-assisted ball burnishing 
653 |a finish milling 
653 |a sandblasting 
653 |a laser sensors 
653 |a laser scanning 
653 |a accelerometer 
653 |a thermal annealing 
653 |a chatter 
653 |a slide burnishing 
653 |a AA2024 floor milling 
653 |a sensitivity analysis 
653 |a non-contact metrology 
653 |a finishing processes 
653 |a abrasive shot blasting 
653 |a shot peening 
653 |a bearing steel 
653 |a rolling contact fatigue 
653 |a natural frequencies 
653 |a tribological interaction 
653 |a tribology 
653 |a topography 
653 |a stainless steel 
653 |a optimization 
653 |a surface topography 
653 |a surface roughness 3D 
653 |a t-test 
653 |a desirability function 
653 |a fused filament fabrication 
653 |a residual stress 
653 |a surface integrity 
700 1 |a Travieso-Rodriguez, J. Antonio 
700 1 |a Dessein, Gilles 
700 1 |a Travieso-Rodriguez, J. Antonio 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
024 8 |a 10.3390/books978-3-0365-9285-5 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/8222  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/128757  |z DOAB: description of the publication 
082 0 |a 900 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a Surface integrity management is remarkably important when metal alloys are used to manufacture relevant parts. Advanced materials such as titanium, nickel alloys, non-ferrous alloys, or special steels make surface integrity preservation after machining particularly difficult. Consequently, thorough finishing techniques are required to rectify the surface integrity. Engineering surfaces that exemplify the importance of surface integrity control are typically found in the transportation industry. Pieces formed using complex curved surfaces, such as turbine blades or landing gears, and molds and dies for upsetting operations are good examples. These kinds of parts are often manufactured through 3- or 5-axis machining with the aid of successive adjacent passes of hemispherical tools, whereas this ball-end milling strategy allows one to achieve complex surfaces by following the desired shape through NC interpolations generated by a CAM (it also has deep constraints). In this context, processes such as burnishing, honing, plateau-honing, grinding, and shot-peening can contribute to improving the described surfaces in terms of texture, residual stress, and hardness, and are easily maneuverable from a procedural point of view. This Special Issue collected the research results on these kinds of finishing processes, which are very important to the transportation industry.