Strategies for Tree Improvement under Stress Conditions

Perennial woody plants usually face multifactorial adverse conditions during their long lifespan, which impairs their growth and productivity. To cope with these adverse conditions, trees deploy morphyological, physiological and molecular responses to adapt to the environmental constraints. By using...

Full description

Bibliographic Details
Main Author: Luo, Jie
Other Authors: Hu, Wentao
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
N/a
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 05316nma a2201525 u 4500
001 EB002186088
003 EBX01000000000000001323575
005 00000000000000.0
007 cr|||||||||||||||||||||
008 231103 ||| eng
020 |a books978-3-0365-8494-2 
020 |a 9783036584942 
020 |a 9783036584959 
100 1 |a Luo, Jie 
245 0 0 |a Strategies for Tree Improvement under Stress Conditions  |h Elektronische Ressource 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (306 p.) 
653 |a Camellia oil 
653 |a identification 
653 |a fertilization 
653 |a sexual dimorphism 
653 |a arbuscular mycorrhizal fungi (AMF) 
653 |a nitrogen forms 
653 |a Salix 
653 |a expression analysis 
653 |a qRT-PCR 
653 |a photosynthesis 
653 |a poplar plantation 
653 |a epigenetics 
653 |a drought 
653 |a walnut oil 
653 |a drip fertigation 
653 |a secondary metabolism 
653 |a secondary metabolites 
653 |a optimized furrow fertilization 
653 |a auxin 
653 |a PtrWRKY51 
653 |a root development 
653 |a plant-available water 
653 |a Research & information: general / bicssc 
653 |a biomass 
653 |a Biology, life sciences / bicssc 
653 |a Santalum album L. 
653 |a hormone treatment 
653 |a drought tolerance 
653 |a fine root traits 
653 |a water-use efficiency 
653 |a salt tolerance gene 
653 |a MaTCP transcription factor 
653 |a photosynthetic rate 
653 |a zinc stress 
653 |a variation 
653 |a antioxidant enzyme activity 
653 |a whole-genome bisulfite sequencing (WGBS) 
653 |a chlorophyll 
653 |a Salix matsudana 
653 |a regulation 
653 |a SpsNAC005 gene 
653 |a abscisic acid 
653 |a auxin response factors 
653 |a salt stress 
653 |a gas exchange 
653 |a Robinia pseudoacacia 
653 |a Hibiscus syriacus Linn. 
653 |a hydraulic characteristics 
653 |a Hibiscus hamabo Sieb. et Zucc 
653 |a organ-specific 
653 |a root morphology 
653 |a gene 
653 |a soil contamination 
653 |a aquaporins 
653 |a transcriptome 
653 |a root architecture 
653 |a transcription factor 
653 |a fatty acid 
653 |a n/a 
653 |a Loess Plateau 
653 |a morphological characteristics of root system 
653 |a fine-root distribution 
653 |a ROS scavenging 
653 |a Paulownia fortunei 
653 |a salt tolerance index 
653 |a soil nitrogen 
653 |a Cunninghamia lanceolata 
653 |a mulberry 
653 |a Populus × euramericana 
653 |a physiological parameters 
653 |a pecan 
653 |a grafting 
653 |a salt tolerance 
653 |a genetic effect 
653 |a scion growth 
653 |a Camellia oleifera 
653 |a NaCl stress 
653 |a Populus × hopeiensis Hu & Chow 
653 |a PP2C family 
653 |a gene regulation 
653 |a Juglans regia 
653 |a siblings 
653 |a foliar fertilizer 
653 |a stress tolerance 
653 |a chlorophyll fluorescence 
653 |a climatic factors 
653 |a physiology 
653 |a oxidative stress 
653 |a Schima superba 
653 |a nutrient-poor 
653 |a transcriptome sequencing 
653 |a phytoremediation 
653 |a antioxidant enzymes 
653 |a poplar 
653 |a micronutrients 
653 |a water deficit 
653 |a boron deficiency 
700 1 |a Hu, Wentao 
700 1 |a Luo, Jie 
700 1 |a Hu, Wentao 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-0365-8494-2 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/113939  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/7782  |7 0  |x Verlag  |3 Volltext 
082 0 |a 720 
082 0 |a 414 
082 0 |a 000 
082 0 |a 612 
082 0 |a 333 
082 0 |a 580 
520 |a Perennial woody plants usually face multifactorial adverse conditions during their long lifespan, which impairs their growth and productivity. To cope with these adverse conditions, trees deploy morphyological, physiological and molecular responses to adapt to the environmental constraints. By using high-throughput sequencing and bioinformatic approaches, many hub genes that are involved in stress response were identified. In recent years, with the advantages of transgenic technology in woody plants, many candidate genes participating in stress responses were functionally characterized and showed great potential for tree improvement under different stresses. On the other hand, cultivation strategies (including beneficial microorganism investigation, beneficial microorganism inoculation, mixed forest and so on) also play crucial roles in tree improvement under abiotic and biotic stress.