Stein Estimation

This book provides a self-contained introduction of Stein/shrinkage estimation for the mean vector of a multivariate normal distribution. The book begins with a brief discussion of basic notions and results from decision theory such as admissibility, minimaxity, and (generalized) Bayes estimation. I...

Full description

Bibliographic Details
Main Authors: Maruyama, Yuzo, Kubokawa, Tatsuya (Author), Strawderman, William E. (Author)
Format: eBook
Language:English
Published: Singapore Springer Nature Singapore 2023, 2023
Edition:1st ed. 2023
Series:JSS Research Series in Statistics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02341nmm a2200337 u 4500
001 EB002181266
003 EBX01000000000000001318753
005 00000000000000.0
007 cr|||||||||||||||||||||
008 231010 ||| eng
020 |a 9789819960774 
100 1 |a Maruyama, Yuzo 
245 0 0 |a Stein Estimation  |h Elektronische Ressource  |c by Yuzo Maruyama, Tatsuya Kubokawa, William E. Strawderman 
250 |a 1st ed. 2023 
260 |a Singapore  |b Springer Nature Singapore  |c 2023, 2023 
300 |a VIII, 130 p. 3 illus  |b online resource 
505 0 |a 1. Decision Theory Preliminaries -- 2. Minimaxity and Improvement on the James-Stein estimator -- 3. Admissibility 
653 |a Statistical Theory and Methods 
653 |a Bayesian Network 
653 |a Statistics  
653 |a Bayesian Inference 
653 |a Applied Statistics 
700 1 |a Kubokawa, Tatsuya  |e [author] 
700 1 |a Strawderman, William E.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a JSS Research Series in Statistics 
028 5 0 |a 10.1007/978-981-99-6077-4 
856 4 0 |u https://doi.org/10.1007/978-981-99-6077-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 519 
520 |a This book provides a self-contained introduction of Stein/shrinkage estimation for the mean vector of a multivariate normal distribution. The book begins with a brief discussion of basic notions and results from decision theory such as admissibility, minimaxity, and (generalized) Bayes estimation. It also presents Stein's unbiased risk estimator and the James-Stein estimator in the first chapter. In the following chapters, the authors consider estimation of the mean vector of a multivariate normal distribution in the known and unknown scale case when the covariance matrix is a multiple of the identity matrix and the loss is scaled squared error. The focus is on admissibility, inadmissibility, and minimaxity of (generalized) Bayes estimators, where particular attention is paid to the class of (generalized) Bayes estimators with respect to an extended Strawderman-type prior. For almost all results of this book, the authors present a self-contained proof. The book is helpful for researchers and graduate students in various fields requiring data analysis skills as well as in mathematical statistics