Piezoelectric Aluminium Scandium Nitride (AlScN) Thin Films: Material Development and Applications in Microdevices

Recently, aluminium scandium nitride (AlScN) emerged as a material with superior properties compared to aluminium nitride (AlN). Substituting Al with Sc in AlN leads to a dramatic increase in the piezoelectric coefficient as well as in electromechanical coupling. This discovery finally allowed us to...

Full description

Bibliographic Details
Main Author: Žukauskaitė, Agnė
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
N/a
Aln
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04839nma a2201033 u 4500
001 EB002172719
003 EBX01000000000000001310496
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230811 ||| eng
020 |a books978-3-0365-6366-4 
020 |a 9783036563671 
020 |a 9783036563664 
100 1 |a Žukauskaitė, Agnė 
245 0 0 |a Piezoelectric Aluminium Scandium Nitride (AlScN) Thin Films: Material Development and Applications in Microdevices  |h Elektronische Ressource 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (186 p.) 
653 |a potassium hydroxide (KOH) 
653 |a film 
653 |a thin films 
653 |a non-metallic substrates 
653 |a MEMS 
653 |a AlScN 
653 |a n/a 
653 |a nonvolatile memory 
653 |a magnetron sputter epitaxy 
653 |a fabrication 
653 |a fatigue 
653 |a ferroelectrics 
653 |a wet etch 
653 |a SAW devices 
653 |a aluminum nitride (AlN) 
653 |a sputter deposition 
653 |a temperature coefficient 
653 |a aluminum scandium nitride 
653 |a ScAlN thin film 
653 |a electromechanical coupling coefficient k2 
653 |a complementary switchable 
653 |a aluminum nitride 
653 |a 5G technology 
653 |a stress 
653 |a piezoelectric 
653 |a PUND test 
653 |a leakage current 
653 |a Q-factor 
653 |a microscanner 
653 |a stress gradient 
653 |a coercive field 
653 |a aluminium scandium nitride 
653 |a alloy scattering 
653 |a Research & information: general / bicssc 
653 |a physical vapor deposition 
653 |a cantilever beams 
653 |a high temperature 
653 |a wurtzite 
653 |a Physics / bicssc 
653 |a diamond thin film 
653 |a thermal stability 
653 |a piezoelectric films 
653 |a micromirror 
653 |a Raman spectroscopy 
653 |a AlN 
653 |a piezoelectricity 
653 |a scandium-aluminum nitride 
653 |a retention 
653 |a laser ultrasound 
653 |a X-ray diffraction 
653 |a thin film 
653 |a elastic properties 
653 |a substrate-RF 
653 |a structure analysis 
653 |a ferroelectric 
653 |a piezoelectric thin films 
653 |a aluminum scandium nitride (AlScN) 
653 |a Lamb-wave resonators 
653 |a scandium-doped aluminum nitride 
653 |a residual stress 
653 |a surface acoustic waves 
700 1 |a Žukauskaitė, Agnė 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-0365-6366-4 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/101366  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/7461  |7 0  |x Verlag  |3 Volltext 
082 0 |a 000 
082 0 |a 530 
082 0 |a 600 
520 |a Recently, aluminium scandium nitride (AlScN) emerged as a material with superior properties compared to aluminium nitride (AlN). Substituting Al with Sc in AlN leads to a dramatic increase in the piezoelectric coefficient as well as in electromechanical coupling. This discovery finally allowed us to overcome the limitations of AlN thin films in various piezoelectric applications while still enabling us to benefit from all of the advantages of the parent material system, such as a high temperature stability, CMOS compatibility, and good mechanical properties. Potential applications include RF filters (bulk acoustic wave (BAW) or surface acoustic wave (SAW) resonators), energy harvesting, sensing applications, and infra-red detectors. The recent progress in MOCVD- and MBE-grown AlScN has led to high-frequency and -power electronics, (high-electron-mobility transistors (HEMTs)). AlScN is the first wurtzite III-nitride where ferroelectric switching was observed, allowing for many new possible applications in semiconductor memories additionally, it enables the additional functionality of switching to applications where piezoelectric materials are already in use. This Special Issue was very successful in covering all of the main aspects of AlScN research, including its growth, the fundamental and application-relevant properties, and device fabrication and characterization. We can see that AlScN technology is mature enough to be utilized in wafer-level material development and complicated devices, but there is still much to discover in terms of deposition process control, anisotropy, and, in particular, ferroelectric behavior.