Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Machinery as a Paradigm of Defense

The survival of plants under stressful environments requires the study of the mechanisms that help in reversing the adverse impacts of reactive oxygen species (ROS) excessively generated under these conditions. Understanding the mechanisms helps in adopting strategies to induce such mechanisms for t...

Full description

Bibliographic Details
Main Author: Khan, Nafees
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Ros
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 06211nma a2201597 u 4500
001 EB002172607
003 EBX01000000000000001310384
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230811 ||| eng
020 |a 9783036577838 
020 |a books978-3-0365-7783-8 
020 |a 9783036577821 
100 1 |a Khan, Nafees 
245 0 0 |a Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Machinery as a Paradigm of Defense  |h Elektronische Ressource 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (466 p.) 
653 |a toxic metals/metalloid 
653 |a respiratory burst oxidase 
653 |a ascorbate peroxidase 
653 |a chromium 
653 |a osmotic stress 
653 |a leucine 
653 |a nitrogen metabolism 
653 |a antioxidants 
653 |a photosynthesis 
653 |a carotenoids 
653 |a yeast 
653 |a Hibiscus cannabinus 
653 |a root growth 
653 |a marker-free transgenic rice 
653 |a antioxidant systems 
653 |a drought 
653 |a bioactive molecules 
653 |a mature seed-derived calli 
653 |a phenolic acids 
653 |a Dittrichia 
653 |a secondary metabolites 
653 |a biochemistry 
653 |a arabidopsis 
653 |a oxidative damage 
653 |a reactive oxygen species 
653 |a thallium toxicity 
653 |a antioxidant capacity 
653 |a Biology, life sciences / bicssc 
653 |a water deficiency 
653 |a metabolome 
653 |a resistant cultivar 
653 |a peach 
653 |a Cu stress 
653 |a seed germination 
653 |a transcriptomics 
653 |a polyamine uptake protein 
653 |a gas exchange features 
653 |a nanoparticles 
653 |a rice 
653 |a pea DNA helicase 45 
653 |a protein degradation 
653 |a stigmasterol 
653 |a wheat 
653 |a osmotic adjustment 
653 |a ascorbate 
653 |a polyamine 
653 |a Put2 
653 |a Research and information: general / bicssc 
653 |a salt stress 
653 |a biochemical metabolites 
653 |a exogenous spermidine 
653 |a BAG9 
653 |a SlBAG9 
653 |a nitric oxide 
653 |a spermine 
653 |a Solanum lycopersicum 
653 |a transcriptome 
653 |a heavy metal stress 
653 |a antioxidant defense 
653 |a tomato 
653 |a phytohormones 
653 |a iron-deficiency 
653 |a physiological changes 
653 |a betaine 
653 |a NADPH oxidase 
653 |a antioxidant enzyme 
653 |a glutathione 
653 |a Hsps 
653 |a SlBAG genes 
653 |a monodehydroascorbic acid reductase 
653 |a ROS 
653 |a vanadium stress 
653 |a catalase 
653 |a hydrogen peroxide 
653 |a thermotolerance 
653 |a melatonin 
653 |a lettuce 
653 |a ethylene 
653 |a hydrogen sulfide 
653 |a sensitive cultivar 
653 |a ethylene response factor 
653 |a flooding stress 
653 |a cell wall 
653 |a sweet potato 
653 |a seed priming 
653 |a ubiquitination 
653 |a salinity stress tolerance 
653 |a NADP dehydrogenases 
653 |a superoxide dismutase 
653 |a physiology 
653 |a oxidative stress 
653 |a phytoremediation 
653 |a antioxidant defense system 
653 |a rohitukine 
653 |a metallothionein 
653 |a water-use-efficiency 
653 |a gene expression 
653 |a antioxidant enzymes 
653 |a bioinformatic analysis 
653 |a S1fa transcription factor 
653 |a flavonoids 
653 |a heat stress 
653 |a plant growth 
653 |a bioactive constituents 
653 |a Arabidopsis 
653 |a stomatal traits 
700 1 |a Khan, Nafees 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-0365-7783-8 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/7462  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/101367  |z DOAB: description of the publication 
082 0 |a 000 
082 0 |a 540 
082 0 |a 612 
082 0 |a 580 
082 0 |a 700 
520 |a The survival of plants under stressful environments requires the study of the mechanisms that help in reversing the adverse impacts of reactive oxygen species (ROS) excessively generated under these conditions. Understanding the mechanisms helps in adopting strategies to induce such mechanisms for the better acclimation of plants. These ROS, if not scavenged, cause damage of cellular components, including lipids, proteins, nucleic acids, and metabolites, and, in extreme cases, even the death of cells in plants. Confronted with abiotic stress, there is an initial elevation in ROS that activates redox signaling to initiate defense in plants through the activation of antioxidant activity. The improvement in the capacity of antioxidant machinery is one of the essential strategies with which to develop tolerance and relieve the pressure of abiotic-stress-induced oxidative changes for the survival of plants. This reprint provides knowledge on the following aspects: Impact of abiotic stress factors and the response of antioxidant machinery to changing abiotic stress conditions, as well as strategies with which to strengthen antioxidant machinery for the survival of plants; Strategies to improve the tolerance mechanisms of plants against abiotic stress factors; Roles and the mechanisms of the plant signaling molecules/growth modifiers/mineral nutrients/hormones/other elicitors in relieving the impacts of abiotic stresses; The utilization of approaches such as genomics, metabolomics, transcriptomics, proteomics, ionomics, and nutiomics to strengthen antioxidant machinery and make plant life easier under abiotic stress conditions.