Novel Structural and Functional Material Properties Enabled by Nanocomposite Design

Nanocomposites have the potential for novel material properties that significantly exceed the capabilities of their individual constituent phases, thereby enabling the exploration of gaps in material property charts. In this book, we aim to provide an overview of the current state of the art, enabli...

Full description

Bibliographic Details
Main Author: Eckert, Jürgen
Other Authors: Kiener, Daniel
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
N/a
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04545nma a2201069 u 4500
001 EB002158460
003 EBX01000000000000001296575
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230515 ||| eng
020 |a 9783036567259 
020 |a books978-3-0365-6725-9 
020 |a 9783036567242 
100 1 |a Eckert, Jürgen 
245 0 0 |a Novel Structural and Functional Material Properties Enabled by Nanocomposite Design  |h Elektronische Ressource 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (216 p.) 
653 |a Cu nanoparticles 
653 |a thermoelectric materials 
653 |a amorphous silicon 
653 |a carbon nanotubes 
653 |a aluminum metal matrix composites 
653 |a n/a 
653 |a teeth 
653 |a diffusion 
653 |a copper sulfide 
653 |a Materials science / bicssc 
653 |a osmotic pressure 
653 |a silicon nanocrystals 
653 |a densification 
653 |a conductivity 
653 |a nanocomposites 
653 |a draw solution 
653 |a History of engineering and technology / bicssc 
653 |a design of experiments 
653 |a thermal transport properties 
653 |a functionalized carbon nanotube 
653 |a Technology: general issues / bicssc 
653 |a Vitreloy 1 
653 |a biosensor 
653 |a citrate-coated magnetic nanoparticle 
653 |a graphene 
653 |a enameloid 
653 |a W/Cu composite 
653 |a gas tightness 
653 |a nanofibers 
653 |a forward osmosis 
653 |a nanocrystalline 
653 |a biodegradable polymers 
653 |a bulk metallic glass 
653 |a femtosecond laser pulses 
653 |a sintering bonding 
653 |a cold rolling 
653 |a electrospinning 
653 |a surface plasmon-polaritons 
653 |a inhomogeneity 
653 |a polyacrylonitrile (PAN) 
653 |a Raman spectroscopy 
653 |a crystal structure 
653 |a laser-induced periodic surface structures 
653 |a superionic conductors 
653 |a high-pressure torsion 
653 |a Seebeck coefficient 
653 |a shark 
653 |a liquid Ga 
653 |a electrophysical measurements 
653 |a electrochemical impedance spectroscopy 
653 |a thermal conductivity 
653 |a physical surface modification 
653 |a nanoindentation 
653 |a microstructure 
653 |a multiphysics simulations 
653 |a acid membrane 
653 |a urushiol 
653 |a non-ideality analysis 
653 |a dip coating 
700 1 |a Kiener, Daniel 
700 1 |a Eckert, Jürgen 
700 1 |a Kiener, Daniel 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-0365-6725-9 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/7037  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/98975  |z DOAB: description of the publication 
082 0 |a 900 
082 0 |a 530 
082 0 |a 380 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a Nanocomposites have the potential for novel material properties that significantly exceed the capabilities of their individual constituent phases, thereby enabling the exploration of gaps in material property charts. In this book, we aim to provide an overview of the current state of the art, enabling the investigation of novel structural and functional material properties through better understanding and implementation of nanocomposite design. The covered properties of interest encompass the whole material usage span, starting from the structural modifications of nanocomposites by employing different synthesis routes, to assessing their microstructure-dependent mechanical properties such as strength, ductility, and high-temperature stability. Furthermore, we address the functional characteristics of nanocomposites, such as soft magnetic properties or thermoelectricity, as well as tailored property adjustment through design strategies (bioinspired design, chemical sensitivity, bio sensing). Thus, the included contributions detail methods for the synthesis, characterization, modeling, and in-depth understanding of the mechanisms governing the outstanding properties of this fascinating material class.