Insecticides for Mosquito Control: Strengthening the Evidence Base

The eradication of vector-borne diseases is threatened by the limited range of available insecticides, leading, inevitably, to the development of resistance. This is particularly concerning for malaria control, which relies heavily on insecticide-treated nets (ITNs) and indoor residual sprays (IRS)....

Full description

Bibliographic Details
Main Author: Lees, Rosemary S.
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Irs
N/a
Kdr
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 06194nma a2201585 u 4500
001 EB002157986
003 EBX01000000000000001296101
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230515 ||| eng
020 |a 9783036565927 
020 |a 9783036565934 
020 |a books978-3-0365-6593-4 
100 1 |a Lees, Rosemary S. 
245 0 0 |a Insecticides for Mosquito Control: Strengthening the Evidence Base  |h Elektronische Ressource 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (338 p.) 
653 |a machine learning 
653 |a model 
653 |a insecticide-treated net (ITN) 
653 |a physical barrier 
653 |a Aedes aegypti 
653 |a synergist ITN 
653 |a bioinsecticide 
653 |a fertility 
653 |a yeast 
653 |a Aedes albopictus 
653 |a life tables 
653 |a insecticide treated nets 
653 |a rabbit 
653 |a insecticide 
653 |a WHO tube 
653 |a method development 
653 |a λ-cyhalothrin 
653 |a malaria 
653 |a quality control (QC) 
653 |a bifenthrin 
653 |a dual active ingredients (dual-AI) 
653 |a malaria vector 
653 |a malaria control 
653 |a Culex pipiens 
653 |a bio-efficacy 
653 |a clothianidin 
653 |a Attractive Toxic Sugar Bait (ATSB) 
653 |a insecticide selection 
653 |a deltamethrin 
653 |a interceptor 
653 |a IRS 
653 |a cuticular resistance 
653 |a product evaluation 
653 |a imidacloprid 
653 |a ITNs 
653 |a PBO ITN 
653 |a image classification 
653 |a method validation 
653 |a laboratory screening 
653 |a insecticide exposure 
653 |a etofenprox 
653 |a vector control 
653 |a Research and information: general / bicssc 
653 |a broflanilide 
653 |a cytochrome P450s 
653 |a durability monitoring 
653 |a protection 
653 |a strain authentication 
653 |a spatial treatment 
653 |a insecticide-resistance 
653 |a Anopheles gambiae 
653 |a diagnostic bioassay 
653 |a pathogen transmission 
653 |a natural compounds 
653 |a mosquito 
653 |a application technology 
653 |a n/a 
653 |a non-insecticidal 
653 |a RNAi 
653 |a thiacloprid 
653 |a strain characterisation 
653 |a Saccharomyces cerevisiae 
653 |a insecticide resistance management (IRM) 
653 |a insecticide resistance 
653 |a pyriproxyfen (PPF) 
653 |a host-seeking behavior 
653 |a Culex quinquefasciatus 
653 |a β-cyfluthrin 
653 |a resistance monitoring 
653 |a Attractive Targeted Sugar Bait (ATSB) 
653 |a Iroquois 
653 |a bioefficacy 
653 |a mosquito-borne disease 
653 |a insecticide-treated nets (ITN) 
653 |a bite-proof garment 
653 |a prallethrin 
653 |a Mathematics and Science / bicssc 
653 |a ATSB 
653 |a dual-AI ITN 
653 |a pyrethroid resistance 
653 |a pyrethroids 
653 |a α-cypermethrin 
653 |a disease transmission 
653 |a mosquitoes 
653 |a insecticide resistance management 
653 |a out-crossing 
653 |a Anopheles 
653 |a automated identification 
653 |a mosquito fitness 
653 |a phytochemical 
653 |a membrane 
653 |a side-effects 
653 |a bioassay 
653 |a ovary development 
653 |a Anopheles mosquito 
653 |a kdr 
653 |a pirimiphos-methyl 
653 |a mosquito control 
653 |a convolutional neural network 
653 |a WHO tunnel test 
653 |a textile 
653 |a interceptor G2 
653 |a human arm 
653 |a pyrethroid 
700 1 |a Lees, Rosemary S. 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
024 8 |a 10.3390/books978-3-0365-6593-4 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/98119  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/6892  |7 0  |x Verlag  |3 Volltext 
082 0 |a 000 
082 0 |a 500 
082 0 |a 610 
082 0 |a 333 
082 0 |a 140 
082 0 |a 600 
520 |a The eradication of vector-borne diseases is threatened by the limited range of available insecticides, leading, inevitably, to the development of resistance. This is particularly concerning for malaria control, which relies heavily on insecticide-treated nets (ITNs) and indoor residual sprays (IRS). New chemistries are being developed, and innovative deployment of insecticides may play a role in overcoming resistance, either through new types of tools or new means of distribution. A variety of novel product types and vector control strategies are under development and evaluation, which is to be celebrated, but a strong evidence base is needed to guide effective operational deployment decisions. Novel approaches should be supported by robust data collected using appropriate and validated methods to monitor efficacy, durability, and any emerging resistance. This reprint presents original research into developing and characterizing new vector control products, as well as understanding and monitoring insecticide resistance. Review articles explore the impact of insecticide resistance and offer guidance on insecticide choice in the face of pyrethroid resistance. Consensus methodologies are presented, in the form of standard operating procedures (SOPs) designed to be adopted and used to generate reproducible data that can be compared and interpreted across and between studies. It is hoped that this collection of articles offers inspiration and guidance on how consistent data can be generated to inform more effective development, evaluation, and use of new and existing vector control tools.