Modeling and Forecasting Monthly Tourism Arrivals to Aruba Since COVID-19 Pandemic

This paper improves short-term forecasting models of monthly tourism arrivals by estimating and evaluating a time-series model with exogenous regressors (ARIMA-X) using a case of Aruba, a small open tourism-dependent economy. Given importance of the US market for Aruba, it investigates informational...

Full description

Bibliographic Details
Main Author: Bespalova, Olga
Format: eBook
Language:English
Published: Washington, D.C. International Monetary Fund 2022
Series:IMF Working Papers
Subjects:
Online Access:
Collection: International Monetary Fund - Collection details see MPG.ReNa
LEADER 03711nmm a2200733 u 4500
001 EB002154263
003 EBX01000000000000001292389
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230404 ||| eng
020 |a 9798400224690 
100 1 |a Bespalova, Olga 
245 0 0 |a Modeling and Forecasting Monthly Tourism Arrivals to Aruba Since COVID-19 Pandemic  |c Olga Bespalova 
260 |a Washington, D.C.  |b International Monetary Fund  |c 2022 
300 |a 38 pages 
651 4 |a Aruba, Kingdom of the Netherlands 
653 |a Income economics 
653 |a Tourism 
653 |a Diseases: Contagious 
653 |a Forecasting 
653 |a Diffusion Processes 
653 |a Production and Operations Management 
653 |a Economic sectors 
653 |a Recreation 
653 |a Communicable diseases 
653 |a Industrial capacity 
653 |a Unemployment: Models, Duration, Incidence, and Job Search 
653 |a Currency crises 
653 |a Health 
653 |a Macroeconomics: Production 
653 |a Gambling 
653 |a Production 
653 |a Macroeconomics 
653 |a Health Behavior 
653 |a Economic & financial crises & disasters 
653 |a Labor 
653 |a Industries: Hospital,Travel and Tourism 
653 |a Forecasting and Other Model Applications 
653 |a Economics of specific sectors 
653 |a Time-Series Models 
653 |a Macroeconomic Aspects of International Trade and Finance: Forecasting and Simulation 
653 |a Labour 
653 |a Economic Forecasting 
653 |a Sports 
653 |a Infectious & contagious diseases 
653 |a Restaurants 
653 |a Unemployment rate 
653 |a Economic forecasting 
653 |a Economics: General 
653 |a Dynamic Quantile Regressions 
653 |a Covid-19 
653 |a Capacity utilization 
653 |a Unemployment 
653 |a Informal sector 
653 |a Economics 
653 |a Dynamic Treatment Effect Models 
653 |a Hospitality, leisure & tourism industries 
041 0 7 |a eng  |2 ISO 639-2 
989 |b IMF  |a International Monetary Fund 
490 0 |a IMF Working Papers 
028 5 0 |a 10.5089/9798400224690.001 
856 4 0 |u https://elibrary.imf.org/view/journals/001/2022/226/001.2022.issue-226-en.xml?cid=525638-com-dsp-marc  |x Verlag  |3 Volltext 
082 0 |a 330 
520 |a This paper improves short-term forecasting models of monthly tourism arrivals by estimating and evaluating a time-series model with exogenous regressors (ARIMA-X) using a case of Aruba, a small open tourism-dependent economy. Given importance of the US market for Aruba, it investigates informational value of Google Searches originating in the USA, flight capacity utilization on the US air-carriers, and per capita demand of the US consumers, given the volatility index in stock markets (VIX). It yields several insights. First, flight capacity is the best variable to account for the travel restrictions during the pandemic. Second, US real personal consumption expenditure becomes a more significnat predictor than income as the former better captured impact of the COVID-19 restrictions on the consumers' behavior, while income boosted by the pandemic fiscal support was not fully directed to spending. Third, intercept correction improves the model in the estimation period. Finally, the pandemic changed econometric relationships between the tourism arrivals and their main determinants, and accuracy of the forecast models. Going forward, the analysts should re-estimate the models. Out-of-sample forecasts with 5 percent confidence intervals are produced for 18 months ahead