Deep Learning Methods for Remote Sensing

Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest...

Full description

Bibliographic Details
Main Author: Akhloufi, Moulay A.
Other Authors: Shahbazi, Mozhdeh
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Agb
Uav
Pso
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 05194nma a2201453 u 4500
001 EB002143854
003 EBX01000000000000001281980
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230202 ||| eng
020 |a 9783036546308 
020 |a books978-3-0365-4630-8 
020 |a 9783036546292 
100 1 |a Akhloufi, Moulay A. 
245 0 0 |a Deep Learning Methods for Remote Sensing  |h Elektronische Ressource 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (344 p.) 
653 |a off-grid 
653 |a machine learning 
653 |a temperature field 
653 |a natural hazard 
653 |a remote sensing sensors 
653 |a optical sensors 
653 |a U-Net 
653 |a geoinformatics 
653 |a extreme events 
653 |a outdated building map 
653 |a VHR images 
653 |a fire classification 
653 |a deep learning 
653 |a fusion 
653 |a super-resolution 
653 |a very high-resolution 
653 |a AGB 
653 |a geometry structure 
653 |a alternating decision trees 
653 |a spatial model 
653 |a wildfire detection 
653 |a History of engineering & technology / bicssc 
653 |a network 
653 |a deep learning neural network 
653 |a Technology: general issues / bicssc 
653 |a target detection 
653 |a aerial images 
653 |a attention mechanism 
653 |a remote sensing images 
653 |a convolutional networks 
653 |a UAV 
653 |a prediction 
653 |a chimney 
653 |a meteorological parameters 
653 |a NSFs 
653 |a change detection 
653 |a faster R-CNN 
653 |a particle swarm optimization 
653 |a space-frequency pseudo-spectrum 
653 |a radar modulation signal 
653 |a high spatial resolution images 
653 |a typhoon 
653 |a bivariate statistics 
653 |a hazard map 
653 |a PSO 
653 |a unmanned aerial vehicle (UAV) 
653 |a object-based 
653 |a rural settlements 
653 |a thermophysical parameters 
653 |a full convolutional network 
653 |a fire segmentation 
653 |a high resolution remote sensing image 
653 |a image enhancement 
653 |a mask R-CNN 
653 |a scattered vegetation 
653 |a geohazard 
653 |a multi-scale context 
653 |a deep neural networks 
653 |a circularly fully convolutional networks 
653 |a disease classification 
653 |a feature extraction 
653 |a ensemble learning 
653 |a DOA estimation 
653 |a high resolution 
653 |a deep-learning 
653 |a complex Morlet wavelet 
653 |a power transmission lines 
653 |a cross-layer feature fusion 
653 |a ensemble models 
653 |a fully convolutional feature maps 
653 |a flash-flood potential index 
653 |a DLNN 
653 |a remote sensing 
653 |a vision transformers 
653 |a Convolutional Neural Networks 
653 |a erosion 
653 |a Generative Adversarial Networks 
653 |a channel-separable ResNet 
653 |a Environmental science, engineering & technology / bicssc 
653 |a changes detection 
653 |a rainfall 
653 |a gully erosion susceptibility 
653 |a spatial analysis 
653 |a three-dimensional scene 
653 |a intelligent prediction 
653 |a cultivated land extraction 
653 |a vibration dampers detection 
653 |a ensemble model 
653 |a fully convolutional network 
653 |a image segmentation 
653 |a time–frequency analysis 
700 1 |a Shahbazi, Mozhdeh 
700 1 |a Akhloufi, Moulay A. 
700 1 |a Shahbazi, Mozhdeh 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
024 8 |a 10.3390/books978-3-0365-4630-8 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/93850  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/book/6279  |x Verlag  |3 Volltext 
082 0 |a 363 
082 0 |a 900 
082 0 |a 610 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing.