|
|
|
|
LEADER |
03615nma a2200961 u 4500 |
001 |
EB002143845 |
003 |
EBX01000000000000001281971 |
005 |
00000000000000.0 |
007 |
cr||||||||||||||||||||| |
008 |
230202 ||| eng |
020 |
|
|
|a 9783036554082
|
020 |
|
|
|a books978-3-0365-5408-2
|
020 |
|
|
|a 9783036554075
|
100 |
1 |
|
|a Koeva, Mila
|
245 |
0 |
0 |
|a Remote Sensing for Land Administration 2.0
|h Elektronische Ressource
|
260 |
|
|
|a Basel
|b MDPI - Multidisciplinary Digital Publishing Institute
|c 2022
|
300 |
|
|
|a 1 electronic resource (244 p.)
|
653 |
|
|
|a detail survey
|
653 |
|
|
|a geospatially informed analysis
|
653 |
|
|
|a high-resolution aerial orthoimages
|
653 |
|
|
|a property taxation
|
653 |
|
|
|a calibration
|
653 |
|
|
|a photogrammetry
|
653 |
|
|
|a cadastral survey
|
653 |
|
|
|a deep learning
|
653 |
|
|
|a HRSI
|
653 |
|
|
|a knowledge co-production
|
653 |
|
|
|a History of engineering & technology / bicssc
|
653 |
|
|
|a lidar
|
653 |
|
|
|a flight plan
|
653 |
|
|
|a Technology: general issues / bicssc
|
653 |
|
|
|a FCN
|
653 |
|
|
|a LiDAR system
|
653 |
|
|
|a geometric accuracy
|
653 |
|
|
|a feature extraction
|
653 |
|
|
|a building outlines
|
653 |
|
|
|a agricultural land boundary
|
653 |
|
|
|a land tenure
|
653 |
|
|
|a visible boundary
|
653 |
|
|
|a deep-learning
|
653 |
|
|
|a data quality
|
653 |
|
|
|a LiDAR data
|
653 |
|
|
|a land
|
653 |
|
|
|a cadastral mapping
|
653 |
|
|
|a cadastre
|
653 |
|
|
|a building footprint extraction
|
653 |
|
|
|a land use planning
|
653 |
|
|
|a UAV
|
653 |
|
|
|a VHR aerial images
|
653 |
|
|
|a ground control points
|
653 |
|
|
|a segmentation
|
653 |
|
|
|a automated feature extraction
|
653 |
|
|
|a LiDAR
|
653 |
|
|
|a remote sensing
|
653 |
|
|
|a cadastre modernization
|
653 |
|
|
|a impact assessment
|
653 |
|
|
|a artificial intelligence
|
653 |
|
|
|a classification
|
653 |
|
|
|a land registration
|
653 |
|
|
|a land administration
|
653 |
|
|
|a handheld LiDAR scanner
|
653 |
|
|
|a edge detection
|
653 |
|
|
|a property valuation
|
653 |
|
|
|a aerial imagery
|
653 |
|
|
|a cadaster
|
653 |
|
|
|a change detection
|
653 |
|
|
|a neural network
|
653 |
|
|
|a image segmentation
|
700 |
1 |
|
|a Bennett, Rohan
|
700 |
1 |
|
|a Persello, Claudio
|
700 |
1 |
|
|a Koeva, Mila
|
041 |
0 |
7 |
|a eng
|2 ISO 639-2
|
989 |
|
|
|b DOAB
|a Directory of Open Access Books
|
500 |
|
|
|a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/
|
028 |
5 |
0 |
|a 10.3390/books978-3-0365-5408-2
|
856 |
4 |
2 |
|u https://directory.doabooks.org/handle/20.500.12854/93855
|z DOAB: description of the publication
|
856 |
4 |
0 |
|u https://www.mdpi.com/books/pdfview/book/6284
|7 0
|x Verlag
|3 Volltext
|
082 |
0 |
|
|a 900
|
082 |
0 |
|
|a 336
|
082 |
0 |
|
|a 700
|
082 |
0 |
|
|a 600
|
082 |
0 |
|
|a 620
|
520 |
|
|
|a The reprint "Land Administration 2.0" is an extension of the previous reprint "Remote Sensing for Land Administration", another Special Issue in Remote Sensing. This reprint unpacks the responsible use and integration of emerging remote sensing techniques into the domain of land administration, including land registration, cadastre, land use planning, land valuation, land taxation, and land development. The title was chosen as "Land Administration 2.0" in reference to both this Special Issue being the second volume on the topic "Land Administration" and the next-generation requirements of land administration including demands for 3D, indoor, underground, real-time, high-accuracy, lower-cost, and interoperable land data and information.
|