|
|
|
|
LEADER |
06934nma a2202149 u 4500 |
001 |
EB002143677 |
003 |
EBX01000000000000001281803 |
005 |
00000000000000.0 |
007 |
cr||||||||||||||||||||| |
008 |
230202 ||| eng |
020 |
|
|
|a books978-3-0365-5921-6
|
020 |
|
|
|a 9783036559216
|
020 |
|
|
|a 9783036559223
|
100 |
1 |
|
|a Pereiro, Patricia
|
245 |
0 |
0 |
|a Transcriptome and Genome Analyses Applied to Aquaculture Research
|h Elektronische Ressource
|
260 |
|
|
|a Basel
|b MDPI - Multidisciplinary Digital Publishing Institute
|c 2022
|
300 |
|
|
|a 1 electronic resource (554 p.)
|
653 |
|
|
|a novel miRNA
|
653 |
|
|
|a muscle
|
653 |
|
|
|a heat shock protein
|
653 |
|
|
|a T lymphocytes
|
653 |
|
|
|a malnutrition
|
653 |
|
|
|a Atlantic salmon
|
653 |
|
|
|a heterobeltiosis
|
653 |
|
|
|a pseudo-female
|
653 |
|
|
|a hepatopancreas necrosis disease
|
653 |
|
|
|a hypoxia
|
653 |
|
|
|a sox family genes
|
653 |
|
|
|a c-reactive protein
|
653 |
|
|
|a lncRNAs
|
653 |
|
|
|a heterosis
|
653 |
|
|
|a antiviral immunity
|
653 |
|
|
|a RNA-Seq
|
653 |
|
|
|a Chinese mitten crab
|
653 |
|
|
|a miRNAs
|
653 |
|
|
|a HPI-axis
|
653 |
|
|
|a metatranscriptomics sequencing
|
653 |
|
|
|a mRNAs
|
653 |
|
|
|a gilthead sea bream
|
653 |
|
|
|a poly-unsaturated fatty acid
|
653 |
|
|
|a aquaculture
|
653 |
|
|
|a brain
|
653 |
|
|
|a meta-analysis
|
653 |
|
|
|a co-chaperon network
|
653 |
|
|
|a whole-transcriptome sequencing
|
653 |
|
|
|a zebrafish
|
653 |
|
|
|a neuroendocrine-immune interaction
|
653 |
|
|
|a B30.2 domain
|
653 |
|
|
|a immune markers
|
653 |
|
|
|a conserved miRNA
|
653 |
|
|
|a osmoregulation
|
653 |
|
|
|a SVCV
|
653 |
|
|
|a comparative transcriptome
|
653 |
|
|
|a transgressive genes
|
653 |
|
|
|a rag1 mutants
|
653 |
|
|
|a Fisheries & related industries / bicssc
|
653 |
|
|
|a oxidative damage
|
653 |
|
|
|a Chinese soft-shelled turtle
|
653 |
|
|
|a Research & information: general / bicssc
|
653 |
|
|
|a Biology, life sciences / bicssc
|
653 |
|
|
|a lumpfish
|
653 |
|
|
|a Loxechinus albus
|
653 |
|
|
|a nutrigenomics
|
653 |
|
|
|a estradiol
|
653 |
|
|
|a metamorphosis
|
653 |
|
|
|a sequencing
|
653 |
|
|
|a turbot
|
653 |
|
|
|a salinity
|
653 |
|
|
|a salmon
|
653 |
|
|
|a transcriptomics
|
653 |
|
|
|a molecular evolution
|
653 |
|
|
|a short pentraxins
|
653 |
|
|
|a single cell transcriptomics
|
653 |
|
|
|a nodavirus
|
653 |
|
|
|a Philasterides dicentrarchi
|
653 |
|
|
|a immunoglobulins
|
653 |
|
|
|a transportome
|
653 |
|
|
|a hypo-metabolic state
|
653 |
|
|
|a Ctenopharyngodon idella
|
653 |
|
|
|a enteromyxosis
|
653 |
|
|
|a European seabass
|
653 |
|
|
|a sex-related
|
653 |
|
|
|a edible red sea urchin
|
653 |
|
|
|a fatty acid elongase
|
653 |
|
|
|a Aeromonas hydrophila
|
653 |
|
|
|a immunohistochemistry
|
653 |
|
|
|a liver
|
653 |
|
|
|a salinity-alkalinity adaptation
|
653 |
|
|
|a immune status
|
653 |
|
|
|a development
|
653 |
|
|
|a swimming performance
|
653 |
|
|
|a joint effect
|
653 |
|
|
|a genomics
|
653 |
|
|
|a transcriptome
|
653 |
|
|
|a non-coding RNAs
|
653 |
|
|
|a histological structure
|
653 |
|
|
|a Megalobrama amblycephala
|
653 |
|
|
|a inflammation
|
653 |
|
|
|a immune response
|
653 |
|
|
|a transporters
|
653 |
|
|
|a fish
|
653 |
|
|
|a mucosal immunity
|
653 |
|
|
|a n/a
|
653 |
|
|
|a opioid receptors
|
653 |
|
|
|a tripartite motif proteins
|
653 |
|
|
|a fatty acids
|
653 |
|
|
|a transcript expression
|
653 |
|
|
|a protein folding
|
653 |
|
|
|a intermuscular bone
|
653 |
|
|
|a small-RNA sequencing
|
653 |
|
|
|a Eriocheir sinensis
|
653 |
|
|
|a gills
|
653 |
|
|
|a protein turnover
|
653 |
|
|
|a transcription factors
|
653 |
|
|
|a red cusk-eel
|
653 |
|
|
|a muscle transcriptome
|
653 |
|
|
|a Misgurnus anguillicaudatus
|
653 |
|
|
|a association analysis
|
653 |
|
|
|a RNA-seq
|
653 |
|
|
|a genomic selection
|
653 |
|
|
|a microRNAs
|
653 |
|
|
|a infection
|
653 |
|
|
|a thermal stress
|
653 |
|
|
|a ceRNA
|
653 |
|
|
|a liver transcriptome
|
653 |
|
|
|a long non-coding RNAs
|
653 |
|
|
|a omega-6/omega-3 ratio
|
653 |
|
|
|a molecular immunopathogenesis
|
653 |
|
|
|a environment
|
653 |
|
|
|a viral infection
|
653 |
|
|
|a teleost
|
653 |
|
|
|a smoltification
|
653 |
|
|
|a reference transcriptome
|
653 |
|
|
|a histopathology
|
653 |
|
|
|a microarray transcriptome
|
653 |
|
|
|a Dicentrarchus labrax
|
653 |
|
|
|a Oreochromis niloticus
|
653 |
|
|
|a chronic inflammation
|
653 |
|
|
|a RT-qPCR
|
653 |
|
|
|a metabolic landmarks
|
653 |
|
|
|a glycolysis
|
653 |
|
|
|a stress response
|
653 |
|
|
|a growth
|
653 |
|
|
|a grass carp reovirus
|
653 |
|
|
|a antiviral
|
653 |
|
|
|a microarray
|
653 |
|
|
|a B cells
|
653 |
|
|
|a bulked segregant analysis
|
653 |
|
|
|a polyploid size dimorphism
|
653 |
|
|
|a Pelodiscus sinensis
|
653 |
|
|
|a association study
|
653 |
|
|
|a hepatopancreatic flora
|
653 |
|
|
|a skin
|
653 |
|
|
|a RNA
|
653 |
|
|
|a SNP
|
653 |
|
|
|a lipid metabolism
|
653 |
|
|
|a seawater adaptation
|
653 |
|
|
|a gene expression
|
653 |
|
|
|a hepatic enzymes
|
653 |
|
|
|a high-throughput sequencing
|
653 |
|
|
|a hepatic transcript expression
|
653 |
|
|
|a common carp
|
653 |
|
|
|a sex differentiation
|
653 |
|
|
|a sexual size dimorphism
|
653 |
|
|
|a Lateolabrax maculatus
|
653 |
|
|
|a hemorrhagic sepsis
|
653 |
|
|
|a genome
|
700 |
1 |
|
|a Pereiro, Patricia
|
041 |
0 |
7 |
|a eng
|2 ISO 639-2
|
989 |
|
|
|b DOAB
|a Directory of Open Access Books
|
500 |
|
|
|a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/
|
024 |
8 |
|
|a 10.3390/books978-3-0365-5921-6
|
856 |
4 |
0 |
|u https://directory.doabooks.org/handle/20.500.12854/94565
|3 Volltext
|
082 |
0 |
|
|a 363
|
082 |
0 |
|
|a 000
|
082 |
0 |
|
|a 576
|
082 |
0 |
|
|a 540
|
082 |
0 |
|
|a 610
|
082 |
0 |
|
|a 333
|
082 |
0 |
|
|a 380
|
082 |
0 |
|
|a 700
|
520 |
|
|
|a Aquaculture is an important economic activity for food production all around the world that has experienced an exponential growth during the last few decades. However, several weaknesses and bottlenecks still need to be addressed in order to improve the aquaculture productive system. The recent fast development of the omics technologies has provided scientists with meaningful tools to elucidate the molecular basis of their research interests. This reprint compiles different works about the use of transcriptomics and genomics technologies in different aspects of the aquaculture research, such as immunity, stress response, development, sexual dimorphism, among others, in a variety of fish and shellfish, and even in turtles. Different transcriptome (mRNAs and non-coding RNAs (ncRNAs)), genome (Single Nucleotide Polymorphisms (SNPs)), and metatranscriptome analyses were conducted to unravel those different aspects of interest.
|