New Science Based Concepts for Increased Efficiency in Battery Recycling 2020

Based on 19 high-quality articles, this Special Issue presents methods for further improving the currently achievable recycling rate, product quality in terms of focused elements, and approaches for the enhanced mobilization of lithium, graphite, and electrolyte components. In particular, the target...

Full description

Bibliographic Details
Main Author: Friedrich, Bernd
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
Lib
N/a
Lfp
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 06027nma a2201465 u 4500
001 EB002143390
003 EBX01000000000000001281516
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230202 ||| eng
020 |a books978-3-0365-5926-1 
020 |a 9783036559254 
020 |a 9783036559261 
100 1 |a Friedrich, Bernd 
245 0 0 |a New Science Based Concepts for Increased Efficiency in Battery Recycling 2020  |h Elektronische Ressource 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (412 p.) 
653 |a spent lithium-ion batteries 
653 |a lithium-ion batteries 
653 |a robotic disassembly 
653 |a lithium slag characterization 
653 |a tubular centrifuge 
653 |a recovery 
653 |a manganese recovery 
653 |a battery generation 
653 |a lithium removal 
653 |a carbon black 
653 |a mechanical processing 
653 |a safety 
653 |a battery recycling 
653 |a electric vehicle battery 
653 |a circular economy 
653 |a dry digestion 
653 |a cobalt 
653 |a Technology: general issues / bicssc 
653 |a mechanical treatment 
653 |a reuse 
653 |a sulfide matte 
653 |a critical raw materials 
653 |a leaching 
653 |a precipitation 
653 |a lithium 
653 |a carbonation 
653 |a oxalic acid 
653 |a particle size analysis 
653 |a phosphorous removal 
653 |a mixed oxalate 
653 |a autoclave 
653 |a lithium-sulfur batteries 
653 |a thermochemical modeling 
653 |a thermodynamic modeling 
653 |a hydrometallurgy 
653 |a lithium-ion batteries (LIBs) 
653 |a black mass 
653 |a lithium phase transformation 
653 |a solid state batteries 
653 |a unit processes 
653 |a LIB 
653 |a pyrolysis 
653 |a slag cleaning 
653 |a manganese 
653 |a smelting 
653 |a SO2 emissions 
653 |a lithium batteries 
653 |a recycling efficiency 
653 |a lithium-ion battery 
653 |a PXRD 
653 |a factorial design of experiments 
653 |a solvent extraction 
653 |a task planner 
653 |a lead-acid battery recycling 
653 |a rotational speed control 
653 |a n/a 
653 |a D2EHPA 
653 |a lithium iron phosphate 
653 |a direct battery recycling 
653 |a History of engineering and technology / bicssc 
653 |a pyrite cinder treatment 
653 |a environmental technologies 
653 |a engineered artificial minerals (EnAM) 
653 |a Mining technology and engineering / bicssc 
653 |a metallurgical recycling 
653 |a recycling chain 
653 |a recovery of valuable metals 
653 |a LFP 
653 |a process stages 
653 |a electron probe microanalysis (EPMA) 
653 |a all-solid-state batteries 
653 |a industrial recycling technologies 
653 |a disassembly 
653 |a pyrometallurgy 
653 |a waste treatment 
653 |a pilot plant 
653 |a fractionation 
653 |a EPMA 
653 |a thermal treatment 
653 |a nickel 
653 |a lithium minerals 
653 |a melt experiments 
653 |a mechanical recycling processes 
653 |a lead bullion 
653 |a batteries 
653 |a supercritical CO2 
653 |a slag 
653 |a lithium recycling 
653 |a metal recovery 
653 |a X-ray absorption near edge structure (XANES) 
653 |a powder X-ray diffraction (PXRD) 
653 |a recycling 
653 |a graphite 
700 1 |a Friedrich, Bernd 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
024 8 |a 10.3390/books978-3-0365-5926-1 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/6477  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/95821  |z DOAB: description of the publication 
082 0 |a 363 
082 0 |a 330 
082 0 |a 900 
082 0 |a 580 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a Based on 19 high-quality articles, this Special Issue presents methods for further improving the currently achievable recycling rate, product quality in terms of focused elements, and approaches for the enhanced mobilization of lithium, graphite, and electrolyte components. In particular, the target of early-stage Li removal is a central point of various research approaches in the world, which has been reported, for example, under the names early-stage lithium recovery (ESLR process) with or without gaseous CO2 and supercritical CO2 leaching (COOL process). Furthermore, many more approaches are present in this Special Issue, ranging from robotic disassembly and the dismantling of Li‐ion batteries, or the optimization of various pyro‐ and hydrometallurgical as well as combined battery recycling processes for the treatment of conventional Li‐ion batteries, all the way to an evaluation of the recycling on an industrial level. In addition to the consideration of Li distribution in compounds of a Li2O-MgO-Al2O3-SiO2-CaO system, Li recovery from battery slags is also discussed. The development of suitable recycling strategies of six new battery systems, such as all-solid-state batteries, but also lithium-sulfur batteries, is also taken into account here. Some of the articles also discuss the fact that battery recycling processes do not have to produce end products such as high-purity battery materials, but that the aim should be to find an "entry point" into existing, proven large-scale industrial processes. Participants in this Special Issue originate from 18 research institutions from eight countries.