Modeling and control of modern electrical energy systems

In Modeling and Control of Modern Electrical Energy Systems, distinguished researcher Dr. Masoud Karimi-Ghartemani delivers a comprehensive discussion of distributed and renewable energy resource integration from a control system perspective. The book explores various practical aspects of these syst...

Full description

Bibliographic Details
Main Author: Karimi-Ghartemani, Masoud
Format: eBook
Language:English
Published: Hoboken, New Jersey John Wiley & Sons, Inc. 2022
Series:IEEE Press series on power and energy systems
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
Table of Contents:
  • 4.2.1 Concept of Controllability
  • 4.2.2 Concept of Stabilizability
  • 4.2.3 Removing Steady-State Error
  • 4.2.4 Challenges with State Feedback Method
  • 4.3 State Estimator
  • 4.3.1 How to Choose the Estimator's Poles?
  • 4.3.2 Separation Property
  • 4.3.3 Conditions for Existence of Estimator Gain H
  • 4.3.4 Concept of Observability
  • 4.3.5 Concept of Detectability
  • 4.4 Optimal Control
  • 4.4.1 Linear Quadratic Regulator (LQR)
  • 4.4.2 Linear Quadratic Tracker (LQT)
  • 4.4.2.1 LQT Without Direct Output Feedback
  • 4.4.2.2 Robust LQT with Direct Output Feedback
  • 4.4.2.3 Elementary Design Approach (Unstable!)
  • 4.4.2.4 LQT Design for Step Commands and Step Disturbances
  • 4.4.2.5 LQT Design for Sinusoidal References and Disturbances
  • 4.5 Summary and Conclusion
  • Problems
  • References
  • Part III Distributed Energy Resources (DERs)
  • Chapter 5 Direct-Current (dc) DERs
  • 5.1 Introduction
  • 5.1.1 System Description
  • 5.1.2 General Statement of Control Objectives
  • 5.2 Overview of a Solar PV Conversion System
  • 5.2.1 Photovoltaic Effect and Solar Cell
  • 5.2.2 General PV Converter Structures
  • 5.3 Power Control via Current Feedback Loop
  • 5.3.1 Control Objectives
  • 5.3.2 Control Approach
  • 5.3.2.1 Robust Tracking and Current Limiting
  • 5.3.2.2 Soft Start Control
  • 5.3.3 Design of Feedback Gains Using TF Approach
  • 5.3.4 LQT Approach and Design
  • 5.3.5 Control Design Requirements for Current Limiting
  • 5.4 Grid Voltage Support
  • 5.4.1 Explanation on Concept of Inertia
  • 5.4.2 Conflict of Inertia Response and Current Limiting
  • 5.4.3 Inertia Response Using Capacitor Emulation
  • 5.4.4 Full State Feedback of Power Loop
  • 5.4.5 Static Grid Voltage Support (Droop Function)
  • 5.4.6 Inertia Power Using Grid Voltage Differentiation
  • 5.4.7 Common Approach: Nested Control Loops
  • 5.5 Analysis of Weak Grid Condition
  • 5.6 Load Voltage Control
  • 5.6.1 Control Structure and Optimal Design
  • 5.6.2 Current Limiting
  • 5.7 Grid-Forming Converter Controls
  • 5.7.1 Grid-Forming Control Without a dc-Side Capacitor
  • 5.7.2 Grid-Forming Controller with a dc-Side Capacitor
  • 5.7.2.1 Full State Feedback
  • 5.8 Control Scenarios in a PV Converter
  • 5.8.1 PV Voltage Control
  • 5.8.2 MPPT via PV Voltage Control
  • 5.8.3 Mathematical Modeling of MPPT Algorithm
  • 5.8.3.1 Calculation of ddvpvppv: Method 1
  • 5.8.3.2 Calculation of ddvpvppv: Method 2
  • 5.8.4 PV Power Control
  • 5.9 LCL Filter*
  • 5.9.1 Passive Damping of Resonance Mode
  • 5.9.2 Full-State Feedback with Active Damping
  • 5.9.3 Delay Compensation Technique Using LQT Approach
  • 5.10 Summary and Conclusion
  • Problems
  • References
  • Chapter 6 Single-Phase Alternating-Current (ac) DERs
  • 6.1 Power Balance in a dc/ac System
  • 6.1.1 Power Decoupling
  • 6.2 Power Control Method via Current Feedback Loop (CFL)
  • 6.2.1 Input Linearization and Feedforward Compensation
  • 6.2.2 Control Structure
  • 6.2.3 Calculating and Limiting Reference Current
  • 6.2.4 Single-Phase ePLL
  • 6.2.4.1 Linear Analysis of ePLL
  • 6.2.4.2 Two Modifications to the ePLL
  • 6.2.5 Controller Formulation and LQT Design
  • 6.2.6 Impact of Grid Voltage Harmonics
  • 6.2.7 Harmonics and dc Control Units
  • 6.2.8 Weak Grid Condition and PLL Impact*
  • 6.2.8.1 Short-Circuit Ratio (SCR)
  • 6.2.8.2 LTI Model of Reference Current Generation
  • 6.2.8.3 Controller and Its Design
  • 6.3 Grid-Supportive Controls
  • 6.3.1 Static (or Steady-State) Support
  • 6.3.2 Dynamic (or Inertia) Support
  • 6.3.3 Power Controller with Grid Support
  • 6.3.4 Virtual Synchronous Machine (VSM)
  • 6.3.4.1 Stability Analysis and Design of VSM
  • 6.3.4.2 Start-up Synchronization
  • 6.3.4.3 Grid-Connection Synchronization
  • 6.4 dc Voltage Control and Support
  • Includes bibliographical references and index
  • 6.4.1 System Modeling
  • 6.4.2 Control Structure and Design
  • 6.4.3 Removing 2-f Ripples from Control Loop*
  • 6.4.3.1 Notch Filtering Method
  • 6.4.3.2 Direct Ripple Cancellation Method
  • 6.4.4 Obtaining Inertia from Capacitor*
  • 6.4.4.1 Non-VSM Approach
  • 6.4.4.2 VSM Approach
  • 6.5 Load Voltage Control and Support
  • 6.5.1 Direct Voltage Control Approach
  • 6.5.2 Voltage Control Loop with Current Limiting
  • 6.5.3 Deriving Grid-Forming Controllers
  • 6.5.3.1 Power Droops Strategy
  • 6.5.3.2 Swing Equation Strategy (VSM Approach)
  • 6.5.3.3 Analogy Between the Two Approaches
  • 6.5.3.4 Damping Strategies
  • 6.5.4 Discussion
  • 6.6 DERs in a Hybrid ac/dc Network
  • 6.7 Summary and Conclusion
  • Problems
  • References
  • Chapter 7 Three-Phase DERs
  • 7.1 Introduction
  • 7.1.1 Symmetrical Components
  • 7.1.2 Powers in a Three-Phase System
  • 7.1.2.1 Balanced Situation
  • 7.1.2.2 Unbalanced Situation
  • 7.1.3 Space Phasor Concept and Notation
  • 7.1.3.1 Space Phasor of a Positive-Sequence Signal
  • 7.1.3.2 Space Phasor of a Negative-Sequence Waveform
  • 7.1.3.3 Power Definitions and Expressions Using Space Phasor
  • 7.2 Three-Phase PLL
  • 7.2.1 SRF-PLL
  • 7.2.1.1 Principles of Operation
  • 7.2.1.2 Approximate Linear Analysis and Design
  • 7.2.1.3 Alternative Presentations
  • 7.2.2 Three-Phase Enhanced PLL (ePLL)
  • 7.2.2.1 Basic ePLL Structure
  • 7.2.2.2 Analysis of Basic ePLL
  • 7.2.3 ePLL with Negative-Sequence Estimation
  • 7.2.4 ePLL with Negative-seq and dc Estimation
  • 7.3 Vector Current Control in Stationary Domain
  • 7.3.1 Controller Structure
  • 7.3.2 Current Reference Generation and Limiting
  • 7.3.2.1 Balanced Current
  • 7.3.2.2 Unbalanced Current
  • 7.3.3 Harmonics, Higher-Order Filters, System Delays
  • 7.3.4 Weak Grid Conditions and Including PLL in Controller*
  • 7.4 Vector Current Control in Synchronous Reference Frame
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Author Biography
  • Preface
  • Acknowledgments
  • Acronyms
  • Symbols
  • Introduction
  • Part I Power Electronic Conversion
  • Chapter 1 Power Electronics
  • 1.1 Power Electronics Based Conversion
  • 1.1.1 Advantages of Power Electronics
  • 1.2 Power Electronic Switches
  • 1.3 Types of Power Electronic Converters
  • 1.4 Applications of Power Electronics in Power Engineering
  • 1.4.1 Power Quality Applications
  • 1.4.2 Power System Applications
  • 1.4.3 Rectifiers and Motor Drive Applications
  • 1.4.4 Backup Supply and Distributed Generation Applications
  • 1.5 Summary and Conclusion
  • Exercises
  • Problems
  • Reference
  • Chapter 2 Standard Power Electronic Converters
  • 2.1 Standard Buck Converter
  • 2.1.1 Analysis of Operation
  • 2.1.2 Switching Model
  • 2.1.3 Average (or Control) Model
  • 2.1.3.1 Current Control Model
  • 2.1.3.2 Output Voltage Control Model
  • 2.1.3.3 Input Voltage Control Model
  • 2.1.4 Steady-State Analysis
  • 2.1.5 Sensitivity Analysis
  • 2.1.5.1 Sensitivity to R
  • 2.1.5.2 Sensitivity to vB
  • 2.1.5.3 Sensitivity to vA
  • 2.1.6 Virtual Resistance Feedback
  • 2.1.7 Input Feedback Linearization
  • 2.2 Standard Boost Converter
  • 2.2.1 Analysis of Operation
  • 2.2.2 Steady-State Analysis
  • 2.2.3 Switching Model
  • 2.2.4 Average (or Control) Model
  • 2.2.4.1 Current Control Model
  • 2.2.4.2 Input Voltage Control
  • 2.2.4.3 Output Voltage Control
  • 2.3 Standard Inverting Buck-Boost Converter*
  • 2.3.1 Analysis of Operation
  • 2.3.2 Steady-State Analysis
  • 2.3.3 Switching Model
  • 2.3.4 Average (or Control) Model
  • 2.3.4.1 Current Control Model
  • 2.4 Standard Four-Switch Buck-Boost Converter*
  • 2.4.1 Analysis of Operation
  • 2.4.2 Steady-State Analysis
  • 2.4.3 Switching Model
  • 2.4.4 Average (or Control) Model
  • 2.4.4.1 Current Control Model
  • 2.5 Standard Bidirectional Converter
  • 2.6 Single-Phase Half-Bridge VSC
  • 2.6.1 Analysis of Operation
  • 2.6.2 Switching Model
  • 2.6.3 Average (or Control) Model
  • 2.6.4 Sensitivity Analysis and Role of Feedback
  • 2.6.4.1 Sensitivity to R
  • 2.6.5 Synchronized Sampling
  • 2.7 Full-Bridge VSC
  • 2.7.1 Bipolar PWM Operation
  • 2.7.2 Unipolar PWM Operation
  • 2.8 Three-Phase VSC
  • 2.8.1 Modeling in Stationary Domain
  • 2.8.2 Modeling in Rotating Synchronous Frame
  • 2.8.3 Compact Modeling Using Complex Transfer Functions*
  • 2.9 Modeling of Converter Delays
  • 2.10 Summary and Conclusion
  • Exercises
  • Problems
  • References
  • Part II Feedback Control Systems
  • Chapter 3 Frequency-Domain (Transfer Function) Approach
  • 3.1 Key Concepts
  • 3.1.1 Transfer Function
  • 3.1.1.1 Differential Equation
  • 3.1.1.2 Definition of Zeros and Poles of a TF or an LTI System
  • 3.1.1.3 Partial Fraction Expansion (PFE)
  • 3.1.2 Stability
  • 3.1.3 Disturbance
  • 3.1.4 Uncertainty
  • 3.1.5 Statement of Control Problem
  • 3.2 Open-Loop Control
  • 3.3 Closed-Loop (or Feedback) Control
  • 3.3.1 Feedback Philosophy
  • 3.3.2 Stability Margins
  • 3.3.2.1 Case I: Proportional Control C(s)&amp
  • equals
  • Kp
  • 3.3.2.2 Case II: Proportional-Derivative Control C(s)&amp
  • equals
  • K(s+z)&amp
  • equals
  • Kds+Kp
  • 3.3.2.3 Case III: Proportional-Integrating Control C(s)&amp
  • equals
  • Ks+zs&amp
  • equals
  • Kp+Kis
  • 3.3.2.4 Case IV: PID Control C(s)&amp
  • equals
  • K(s+z1)(s+z2)s&amp
  • equals
  • Kds+Kp+Kis
  • 3.4 Some Feedback Loop Properties
  • 3.4.1 Removal of Steady-State Error
  • 3.4.2 Pole Location and Transient Response
  • 3.5 Summary and Conclusion
  • Problems
  • Chapter 4 Time-Domain (State Space) Approach
  • 4.1 State Space Representation and Properties
  • 4.1.1 Relationship between SS and TF
  • 4.1.2 Facts
  • 4.2 State Feedback