Present and Future of Gravitational Wave Astronomy

The first detection on Earth of a gravitational wave signal from the coalescence of a binary black hole system in 2015 established a new era in astronomy, allowing the scientific community to observe the Universe with a new form of radiation for the first time. More than five years later, many more...

Full description

Bibliographic Details
Main Author: Vajente, Gabriele
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
N/a
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04624nma a2201009 u 4500
001 EB002132011
003 EBX01000000000000001270068
005 00000000000000.0
007 cr|||||||||||||||||||||
008 221110 ||| eng
020 |a 9783036552262 
020 |a 9783036552255 
020 |a books978-3-0365-5226-2 
100 1 |a Vajente, Gabriele 
245 0 0 |a Present and Future of Gravitational Wave Astronomy  |h Elektronische Ressource 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (428 p.) 
653 |a ground based gravitational-wave detector 
653 |a stars 
653 |a gravitational-wave laser interferometers 
653 |a gravitational wave 
653 |a laser metrology 
653 |a binary stars 
653 |a dark matter 
653 |a noise subtraction 
653 |a interferometers 
653 |a n/a 
653 |a quantum optics 
653 |a calibration 
653 |a stellar evolution 
653 |a core-collapse supernova 
653 |a seismic isolation system 
653 |a squeezed states 
653 |a gravitational wave detectors 
653 |a newtonian noise 
653 |a Newtonian noise 
653 |a thermal noise 
653 |a low-noise high-power laser interferometry 
653 |a astrophysics 
653 |a quantum noise 
653 |a einstein telescope 
653 |a suspensions 
653 |a gravitational waves 
653 |a gravitational-wave backgrounds 
653 |a future detectors 
653 |a cryostat 
653 |a continuous gravitational waves 
653 |a Research & information: general / bicssc 
653 |a data quality 
653 |a gravitational wave detector 
653 |a DECIGO 
653 |a silicon 
653 |a Virgo 
653 |a optomechanics 
653 |a stochastic gravitational-wave backgrounds 
653 |a Physics / bicssc 
653 |a pulsar timing arrays 
653 |a interferometer 
653 |a payload 
653 |a coating noise 
653 |a diffraction loss 
653 |a KAGRA 
653 |a black holes 
653 |a cryogenics 
653 |a Advanced Virgo 
653 |a neutron stars 
653 |a underground 
653 |a gravitational-wave astrophysics 
653 |a LIGO 
653 |a stellar dynamics 
653 |a stochastic searches of gravitational waves 
653 |a laser interferometer 
653 |a noise mitigation 
653 |a detector characterization 
653 |a laser interferometers 
653 |a seismic noise 
700 1 |a Vajente, Gabriele 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-0365-5226-2 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/93170  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/6066  |7 0  |x Verlag  |3 Volltext 
082 0 |a 000 
082 0 |a 576 
082 0 |a 530 
520 |a The first detection on Earth of a gravitational wave signal from the coalescence of a binary black hole system in 2015 established a new era in astronomy, allowing the scientific community to observe the Universe with a new form of radiation for the first time. More than five years later, many more gravitational wave signals have been detected, including the first binary neutron star coalescence in coincidence with a gamma ray burst and a kilonova observation. The field of gravitational wave astronomy is rapidly evolving, making it difficult to keep up with the pace of new detector designs, discoveries, and astrophysical results. This Special Issue is, therefore, intended as a review of the current status and future directions of the field from the perspective of detector technology, data analysis, and the astrophysical implications of these discoveries. Rather than presenting new results, the articles collected in this issue will serve as a reference and an introduction to the field. This Special Issue will include reviews of the basic properties of gravitational wave signals; the detectors that are currently operating and the main sources of noise that limit their sensitivity; planned upgrades of the detectors in the short and long term; spaceborne detectors; a data analysis of the gravitational wave detector output focusing on the main classes of detected and expected signals; and implications of the current and future discoveries on our understanding of astrophysics and cosmology.