



LEADER 
02792nmm a2200397 u 4500 
001 
EB002119842 
003 
EBX01000000000000001257899 
005 
00000000000000.0 
007 
cr 
008 
221028  eng 
020 


a 9780444898401

020 


a 9780080533186

020 


a 0444898409

050 

4 
a QA9.54

100 
1 

a Buss, Samuel R.

245 
0 
0 
a Handbook of proof theory
c edited by Samuel R. Buss

260 


a New York
b Elsevier
c 1998, 1998

300 


a 811 pages

505 
0 

a Preface. List of Contributors. Chapter I. An Introduction to Proof Theory (S.R. Buss). Chapter II. FirstOrder Proof Theory of Arithmetic (S.R. Buss). Chapter III. Hierarchies of Provably Recursive Functions (M. Fairtlough, S.S. Wainer). Chapter IV. Subsystems of Set Theory and Second Order Number Theory (W. Pohlers). Chapter V. Gödels Functional ("Dialectica") Interpretation (J. Avigad, S. Feferman). Chapter VI. Realizability (A.S. Troelstra). Chapter VII. The Logic of Provability (G. Japaridze, D. de Jongh). Chapter VIII. The Lengths of Proofs (P. Pudlþk). Chapter IX. A ProofTheoretic Framework for Logic Programming (G. Jäger, R.F. Stärk)). Chapter X. Types in Logic, Mathematics and Programming (R.L. Constable). Name Index. Subject Index

505 
0 

a Includes bibliographical references and indexes

653 


a Preuve, Théorie de la / Guides, manuels, etc / ram

653 


a Proof theory / http://id.loc.gov/authorities/subjects/sh85107437

653 


a Théorie de la preuve

653 


a MATHEMATICS / Logic / bisacsh

653 


a Logica / gtt

653 


a MATHEMATICS / Infinity / bisacsh

653 


a Proof theory / fast / (OCoLC)fst01078942

041 
0 
7 
a eng
2 ISO 6392

989 


b ZDB1ELC
a Elsevier eBook collection Mathematics

490 
0 

a Studies in logic and the foundations of mathematics

015 


a GBB738743

776 


z 9780080533186

776 


z 0080533183

856 
4 
0 
u https://www.sciencedirect.com/science/bookseries/0049237X/137
x Verlag
3 Volltext

082 
0 

a 511.3

520 


a This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a selfcontained expository of articles, covered in great detail and depth. The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science
