Ion and Molecule Transport in Membrane Systems

Membranes play an enormous role in our life. Biological cell membranes control the fluxes of substances in and out of cells. Artificial membranes are widely used in numerous applications including "green" separation processes in chemistry, agroindustry, biology, medicine; they are used as...

Full description

Bibliographic Details
Main Author: Nikonenko, Victor V.
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Tb
Cfd
N/a
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 05801nma a2201657 u 4500
001 EB002049668
003 EBX01000000000000001193334
005 00000000000000.0
007 cr|||||||||||||||||||||
008 220822 ||| eng
020 |a 9783036513591 
020 |a 9783036513607 
020 |a books978-3-0365-1360-7 
100 1 |a Nikonenko, Victor V. 
245 0 0 |a Ion and Molecule Transport in Membrane Systems  |h Elektronische Ressource 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (368 p.) 
653 |a crosslinking 
653 |a biomimetic membrane 
653 |a Impedance study 
653 |a LaPO4: Ce 
653 |a ion pair amphiphile 
653 |a acetic acids 
653 |a electrokinetics 
653 |a 3D printing 
653 |a physico-chemical properties of confined water 
653 |a concentration difference 
653 |a polymer inclusion membrane 
653 |a anomalous water diffusion 
653 |a pulsed electrodialysis reversal 
653 |a molecular dynamics 
653 |a hexanoic acids 
653 |a anion-exchange membrane 
653 |a polyphenylene oxide 
653 |a nuclear envelope 
653 |a ion-exchange membranes 
653 |a XRD analysis 
653 |a ion transport parameters 
653 |a structural mechanics 
653 |a interaction 
653 |a hydrophilicity 
653 |a bioactive peptides 
653 |a Technology: general issues / bicssc 
653 |a electrodialysis with filtration membrane (EDFM) 
653 |a profiled membrane 
653 |a corrugated membranes 
653 |a water dynamics 
653 |a computer simulations 
653 |a protein-water interactions 
653 |a current-voltage curves 
653 |a inner nuclear membrane 
653 |a voltammetry 
653 |a polymer blends 
653 |a nano-size water pore 
653 |a Tb 
653 |a bioassay-guided validation 
653 |a ion-exchange particles 
653 |a lactic acid removal 
653 |a overlimiting current 
653 |a concentration polarisation 
653 |a TRPV1 channel permeability for water 
653 |a pulsed electric field 
653 |a particle tracking 
653 |a ion exchange membranes 
653 |a triple size-selective separation 
653 |a electrolyte composition 
653 |a PP membrane 
653 |a ionic liquid 
653 |a scaling 
653 |a CFD 
653 |a Fujifilm 
653 |a photoluminescence 
653 |a Morphology 
653 |a ion channel gating 
653 |a separator 
653 |a FTIR study 
653 |a n/a 
653 |a molecular dynamics simulation 
653 |a thermal pressing 
653 |a O2 plasma 
653 |a hyperbranched polymer 
653 |a Neosepta 
653 |a ionic channel 
653 |a biopolymer electrolyte membranes 
653 |a salinity gradient power 
653 |a fluid-structure interaction 
653 |a ion-exchange membrane 
653 |a impedance study 
653 |a pressure drop 
653 |a zinc-air battery 
653 |a fouling 
653 |a air-pollutant nanoparticle 
653 |a hydroxide exchange membrane 
653 |a alkaline fuel cells 
653 |a outer nuclear membrane 
653 |a coarse-grained model 
653 |a pulmonary surfactant monolayer 
653 |a volatile fatty acids (VFAs) 
653 |a ion exchange membrane 
653 |a mass transfer 
653 |a phosphate transport 
653 |a dielectric properties 
653 |a EDLC fabrication 
653 |a ionic conductivity 
653 |a glucose uptake 
653 |a loss tangent peaks 
653 |a electrodialysis 
653 |a cholesterol 
653 |a hydrodynamic 
653 |a profiled membranes 
653 |a limiting current density 
653 |a ionic liquids 
653 |a TiO2 nanoparticles 
653 |a acid whey 
653 |a electric modulus study 
653 |a membrane capacitive deionization 
653 |a water swelling 
653 |a supported liquid membrane 
653 |a heterogeneity 
653 |a whey 
653 |a demineralization 
653 |a reverse electrodialysis 
653 |a Trukhan model 
653 |a UV treatment 
653 |a water H-bonding 
653 |a electro-convective instability 
653 |a water permeation 
653 |a NETs 
700 1 |a Nikonenko, Victor V. 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
024 8 |a 10.3390/books978-3-0365-1360-7 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/4130  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/76683  |z DOAB: description of the publication 
082 0 |a 414 
082 0 |a 333 
082 0 |a 380 
082 0 |a 700 
082 0 |a 600 
520 |a Membranes play an enormous role in our life. Biological cell membranes control the fluxes of substances in and out of cells. Artificial membranes are widely used in numerous applications including "green" separation processes in chemistry, agroindustry, biology, medicine; they are used as well in energy generation from renewable sources. They largely mimic the structure and functions of biological membranes. The similarity in the structure leads to the similarity in the properties and the approaches to study the laws governing the behavior of both biological and artificial membranes. In this book, some physico-chemical and chemico-physical aspects of the structure and behavior of biological and artificial membranes are investigated.