Application of Nanoparticles for Oil Recovery

The oil industry has, in the last decade, seen successful applications of nanotechnology in completion systems, completion fluids, drilling fluids, and in improvements of well constructions, equipment, and procedures. However, very few full field applications of nanoparticles as an additive to injec...

Full description

Bibliographic Details
Main Author: Torsaeter, Ole
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
N/a
Eor
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 03856nma a2200757 u 4500
001 EB002047983
003 EBX01000000000000001191649
005 00000000000000.0
007 cr|||||||||||||||||||||
008 220822 ||| eng
020 |a 9783036513171 
020 |a 9783036513188 
020 |a books978-3-0365-1317-1 
100 1 |a Torsaeter, Ole 
245 0 0 |a Application of Nanoparticles for Oil Recovery  |h Elektronische Ressource 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (145 p.) 
653 |a nanoparticles stability 
653 |a pore throat size distribution 
653 |a polymer flooding 
653 |a chemical flooding 
653 |a reservoir condition 
653 |a n/a 
653 |a recovery factor 
653 |a foam 
653 |a enhanced oil recovery 
653 |a microfluidics 
653 |a nanoparticle agglomeration 
653 |a mathematical model 
653 |a mercury injection capillary pressure 
653 |a nanotechnology for EOR 
653 |a Technology: general issues / bicssc 
653 |a silica nanoparticles 
653 |a cellulose nanocrystals 
653 |a biopolymer 
653 |a polymer-coated nanoparticles 
653 |a formation rheological characteristics 
653 |a surfactant 
653 |a nanomaterials 
653 |a nanoparticle 
653 |a interfacial tension 
653 |a TEMPO-oxidized cellulose nanofibrils 
653 |a wettability alteration 
653 |a crude oil 
653 |a CO2 EOR 
653 |a CO2 mobility control 
653 |a nanoparticles 
653 |a EOR 
653 |a nanoparticle stability 
653 |a polymer concentration 
653 |a nanoparticle-stabilized emulsion and flow diversion 
653 |a core flood 
653 |a contact angle 
653 |a reservoir rock 
653 |a nanocellulose 
700 1 |a Torsaeter, Ole 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-0365-1317-1 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/3891  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/76455  |z DOAB: description of the publication 
082 0 |a 500 
082 0 |a 700 
082 0 |a 600 
520 |a The oil industry has, in the last decade, seen successful applications of nanotechnology in completion systems, completion fluids, drilling fluids, and in improvements of well constructions, equipment, and procedures. However, very few full field applications of nanoparticles as an additive to injection fluids for enhanced oil recovery (EOR) have been reported. Many types of chemical enhanced oil recovery methods have been used in fields all over the world for many decades and have resulted in higher recovery, but the projects have very often not been economic. Therefore, the oil industry is searching for a more efficient enhanced oil recovery method. Based on the success of nanotechnology in various areas of the oil industry, nanoparticles have been extensively studied as an additive in injection fluids for EOR. This book includes a selection of research articles on the use of nanoparticles for EOR application. The articles are discussing nanoparticles as additive in waterflooding and surfactant flooding, stability and wettability alteration ability of nanoparticles and nanoparticle stabilized foam for CO2-EOR. The book also includes articles on nanoparticles as an additive in biopolymer flooding and studies on the use of nanocellulose as a method to increase the viscosity of injection water. Mathematical models of the injection of nanoparticle-polymer solutions are also presented.