Advanced Sensing and Control for Connected and Automated Vehicles

Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data,...

Full description

Bibliographic Details
Main Author: Huang, Chao
Other Authors: Du, Haiping, Zhao, Wanzhong, Zhao, Yifan
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
N/a
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04299nma a2201069 u 4500
001 EB002043615
003 EBX01000000000000001187281
005 00000000000000.0
007 cr|||||||||||||||||||||
008 220822 ||| eng
020 |a 9783036534886 
020 |a 9783036534879 
020 |a books978-3-0365-3488-6 
100 1 |a Huang, Chao 
245 0 0 |a Advanced Sensing and Control for Connected and Automated Vehicles  |h Elektronische Ressource 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (284 p.) 
653 |a unsprung mass 
653 |a V2V communication 
653 |a collision warning system 
653 |a ultra-wideband 
653 |a kabsch algorithm 
653 |a unified chassis control 
653 |a dead reckoning 
653 |a radar accuracy 
653 |a vehicle dynamic parameters 
653 |a autonomous driving 
653 |a n/a 
653 |a potential field 
653 |a sigmoid curve 
653 |a end-to-end learning 
653 |a kalman filter 
653 |a History of engineering & technology / bicssc 
653 |a simulation 
653 |a Technology: general issues / bicssc 
653 |a yaw stability 
653 |a fronto-parietal network 
653 |a data-driven 
653 |a object vehicle estimation 
653 |a radar latency 
653 |a vehicle-to-vehicle communication 
653 |a roll stability 
653 |a off-tracking 
653 |a attention feature fusion 
653 |a multiple-model 
653 |a electric vehicle 
653 |a object detection 
653 |a executive control 
653 |a model predictive control 
653 |a real-time control 
653 |a urban platooning 
653 |a articulated cargo trucks 
653 |a time to collision 
653 |a path planning 
653 |a connected and autonomous vehicles 
653 |a simulated driving 
653 |a analytic hierarchy architecture 
653 |a autonomous vehicles 
653 |a autonomous vehicle 
653 |a task-cuing experiment 
653 |a multi-scale channel attention 
653 |a urban vehicle platooning 
653 |a string stability 
653 |a weighted interpolation 
653 |a artificial neural networks 
653 |a traffic scenes 
653 |a trajectory tracking 
653 |a vehicle dynamics model 
653 |a Unscented Kalman Filter 
653 |a tyre blow-out 
653 |a truck platooning 
653 |a in-vehicle network 
653 |a attention 
653 |a electroencephalogram 
653 |a TROOP 
653 |a multi-task learning 
700 1 |a Du, Haiping 
700 1 |a Zhao, Wanzhong 
700 1 |a Zhao, Yifan 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-0365-3488-6 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/81125  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/5154  |7 0  |x Verlag  |3 Volltext 
082 0 |a 720 
082 0 |a 900 
082 0 |a 380 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans' body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs.