RF and microwave circuit design theory and applications

"This textbook covers a typical modern syllabus in radio frequency or microwave design at final year undergraduate or first year postgraduate level. The content has been chosen to include all of the basic topics necessary to give a rigorous introduction to high-frequency technology. Both the co...

Full description

Bibliographic Details
Main Authors: Free, Charles E., Aitchison, Colin S. (Author)
Format: eBook
Language:English
Published: Hoboken, NJ John Wiley & Sons, Inc. 2021
Series:Microwave and wireless technologies series
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
Table of Contents:
  • A5.1.1 Transmission parameters (ABCD parameters)
  • A5.1.2 Admittance parameters (Y-parameters)
  • A5.1.3 Impedance parameters (Z-parameters)
  • References
  • 6. Microwave Ferrites
  • 6.1 Introduction
  • 6.2 Basic properties of ferrite materials
  • 6.2.1 Ferrite materials
  • 6.2.2 Precession in ferrite materials
  • 6.2.3 Permeability tensor
  • 6.2.4 Faraday rotation
  • 6.3 Ferrites in metallic waveguide
  • 6.3.1 Resonance isolator
  • 6.3.2 Field displacement isolator
  • 6.3.3 Waveguide circulator
  • 6.4 Ferrites in planar circuits
  • 6.4.1 Planar circulators
  • 6.4.2 Edge-guided-mode propagation
  • 6.4.3 Edge-guided-mode isolator
  • 6.4.4 Phase shifters
  • 6.5 Self-biased ferrites
  • 6.6 Supplementary problems
  • References
  • 7. Measurements
  • 7.1 Introduction
  • 7.2 RF and Microwave connectors
  • 7.2.1 Maintenance of connectors
  • 7.2.2 Connecting to planar circuits
  • 7.3 Microwave vector network analyzers
  • 7.3.1 Description and configuration
  • 11. Oscillators
  • 11.1 Introduction
  • 11.2 Criteria for oscillation in a feedback circuit
  • 11.3 RF (transistor) oscillators
  • 11.3.1 Colpitts oscillator
  • 11.3.2 Hartley Oscillator
  • 11.3.3 Clapp-Gouriet Oscillator
  • 11.4 Voltage controlled oscillator (VCO)
  • 11.5 Crystal-controlled oscillators
  • 11.5.1 Crystals
  • 11.5.2 Crystal-controlled oscillators
  • 11.6 Frequency synthesizers
  • 11.6.1 The phase-locked loop
  • 11.6.1.1 Principle of a phase-locked loop
  • 11.6.1.2 Main components of a phase-locked loop
  • 11.6.1.3 Gain of a phase-locked loop
  • 11.6.1.4 Transient analysis of a phase-locked loop
  • 11.6.2 Indirect frequency synthesizer circuits
  • 11.7 Microwave oscillators
  • 11.7.1 Dielectric resonator oscillator
  • 11.7.2 Delay line stabilized oscillator
  • 11.7.3 Diode oscillators
  • 11.7.3.1 Gunn diode oscillator
  • 11.7.3.2 IMPATT diode oscillator
  • 11.8 Oscillator noise
  • 11.9 Measurement of oscillator noise
  • 11.10 Supplementary problems
  • References
  • Includes bibliographical references and index
  • 2.2 Effective relative permittivity,
  • 2.3 Microstrip design graphs and CAD software
  • 2.4 Operating frequency limitations
  • 2.5 Skin depth
  • 2.6 Examples of microstrip components
  • 2.6.1 Branch-line coupler
  • 2.6.2 Quarter-wave transformer
  • 2.6.3 Wilkinson power divider
  • 2.7 Microstrip coupled-line structures
  • 2.7.1 Analysis of microstrip coupled lines
  • 2.7.2 Microstrip directional couplers
  • 2.7.2.1 Design of microstrip directional couplers
  • 2.7.2.2 Directivity of microstrip directional couplers
  • 2.7.2.3 Improvements to microstrip directional couplers
  • 2.7.3 Examples of other common microstrip coupled-line structures
  • 2.7.3.1 Microstrip DC break
  • 2.7.3.2 Edge-coupled microstrip band-pass filter
  • 2.7.3.3 Lange coupler
  • 2.8 Summary
  • 2.9 Supplementary problems
  • 2.10 Appendix A2.1: Microstrip design graphs
  • References
  • 3. Fabrication processes for RF and microwave circuits
  • 3.1 Introduction
  • 3.2 Review of essential materials parameters
  • Appendix A1.2 Coplanar waveguide
  • A1.2.1 Structure of coplanar waveguide (CPW)
  • A1.2.2 Electromagnetic field distribution on a CPW line
  • A1.2.3 Essential properties of coplanar (CPW) lines
  • A1.2.4 Summary of key points relating to CPW lines
  • Appendix A1.3 Metal waveguide
  • A1.3.1 Waveguide principles
  • A1.3.2 Waveguide propagation
  • A1.3.3 Rectangular waveguide modes
  • A1.3.4 The waveguide equation
  • A1.3.5 Phase and group velocities
  • A1.3.6 Field theory analysis of rectangular waveguides
  • A1.3.7 Waveguide impedance
  • A1.3.8 Higher-order rectangular waveguide modes
  • A1.3.9 Waveguide attenuation
  • A1.3.10 Sizes of rectangular waveguide, and waveguide designation
  • A1.3.11 Circular waveguide
  • Appendix A1.4 Microstrip
  • Appendix A1.5 Equivalent lumped circuit representation of a transmission line
  • References
  • 2. Planar Circuit Design I: Designing using Microstrip
  • 2.0 Introduction
  • 2.1 Electromagnetic field distribution across a microstrip line
  • Preface
  • 1. RF Transmission lines
  • 1.0 Introduction
  • 1.1 Voltage, current and impedance relationships on a transmission line
  • 1.2 Propagation constant
  • 1.2.1 Dispersion
  • 1.2.2 Amplitude distortion
  • 1.3 Lossless transmission lines
  • 1.4 Matched and mismatched transmission lines
  • 1.5 Waves on a transmission line
  • 1.6 The Smith chart
  • 1.6.1 Derivation of the chart
  • 1.6.2 Properties of the chart
  • 1.7 Stubs
  • 1.8 Distributed matching circuits
  • 1.9 Manipulation of lumped impedance using the Smith chart
  • 1.10 Lumped impedance matching
  • 1.10.1 Matching a complex load impedance to a real source impedance
  • 1.10.2 Matching a complex load impedance to a complex source impedance
  • 1.11 Equivalent lumped circuit of a lossless transmission line
  • 1.12 Supplementary problems
  • 1.13 Appendices
  • Appendix A1.1 Coaxial cable
  • A1.1.1 Electromagnetic field patterns in coaxial cable
  • A1.1.2 Essential properties of coaxial cables
  • 12. RF and Microwave Antennas
  • 12.1 Introduction
  • 12.2 Antenna parameters
  • 12.3 Spherical polar coordinates
  • 12.4 Radiation from a Hertzian dipole
  • 12.4.1 Basic principles
  • 12.4.2 Gain of a Hertzian dipole
  • 12.5 Radiation from a half-wave dipole
  • 12.5.1 Basic principles
  • 12.5.2 Gain of a half-wave dipole
  • 12.5.3 Summary of the properties of a half-wave dipole
  • 12.6 Antenna arrays
  • 12.7 Mutual impedance
  • 12.8 Arrays containing parasitic elements
  • 12.9 Yagi-Uda array
  • 12.10 Log-periodic array
  • 12.11 Loop antenna
  • 12.12 Planar antennas
  • 12.12.1 Linearly polarized patch antennas
  • 12.12.2 Circularly polarized planar antennas
  • 12.13 Horn antennas
  • 12.14 Parabolic reflector antennas
  • 12.15 Slot radiators
  • 12.16 Supplementary problems
  • 12.17 Appendix: Microstrip design graphs for substrates with er = 2.3
  • References
  • 13. Power Amplifiers and Distributed Amplifiers
  • 13.1 Introduction
  • 13.2 Power am ..
  • 4.1 Introduction
  • 4.2 Discontinuities in microstrip
  • 4.2.1 Open-end effect
  • 4.2.2 Step width
  • 4.2.3 Corners
  • 4.2.4 Gaps
  • 4.2.5 T-junctions
  • 4.3 Microstrip enclosures
  • 4.4 Packaged lumped-element passive components
  • 4.4.1 Typical packages for RF passive components
  • 4.4.2 Lumped-element resistors
  • 4.4.3 Lumped-element capacitors
  • 4.4.4 Lumped-element inductors
  • 4.5 Miniature planar components
  • 4.5.1 Spiral inductors
  • 4.5.2 Loop inductors
  • 4.5.3 Interdigitated capacitors
  • 4.5.4 MIM (metal-insulator-metal) capacitors
  • 4.6 Appendix 4.1: Insertion loss due to a microstrip gap
  • References
  • 5. S-parameters
  • 5.1 Introduction
  • 5.2 S-parameter definitions
  • 5.3 Signal flow graphs
  • 5.4 Mason's non-touching loop rule
  • 5.5 Reflection coefficient of a 2-port network
  • 5.6 Power gains of two-port networks
  • 5.7 Stability
  • 5.8 Supplementary Problems
  • 5.9 Appendix A5.1 Relationships between network parameters
  • 7.3.2 Error models representing a VNA
  • 7.3.3 Calibration of a VNA
  • 7.4 On-wafer measurements
  • 7.5 Summary
  • References
  • 8. RF Filters
  • 8.1 Introduction
  • 8.2 Review of filter responses
  • 8.3 Filter parameters
  • 8.4 Design strategy for RF and microwave filters
  • 8.5 Multi-element low-pass filter
  • 8.6 Practical filter responses
  • 8.7 Butterworth (or maximally-flat) response
  • 8.7.1 Butterworth low-pass filter
  • 8.7.3 Butterworth band-pass filter
  • 8.7.3 Butterworth band-pass filter
  • 8.8 Chebyshev (equal ripple) response
  • 8.9 Microstrip low-pass filter, using stepped impedances
  • 8.10 Microstrip low-pass filter, using stubs
  • 8.11 Microstrip edge-coupled band-pass filters
  • 8.12 Microstrip end-coupled band-pass filters
  • 8.13 Practical points associated with filter design
  • 8.14 Summary
  • 8.15 Supplementary problems
  • 8.16 Appendix A8.1 Equivalent lumped T-network representation of a transmission line
  • References
  • 3.2.1 Dielectrics
  • 3.2.2 Conductors
  • 3.3 Requirements for RF circuit materials
  • 3.4 Fabrication of planar high-frequency circuits
  • 3.4.1 Etched circuits
  • 3.4.2 Thick-film circuits (direct screen printed)
  • 3.4.3 Thick-film circuits (using photoimageable materials)
  • 3.4.4 LTCC (low temperature co-fired ceramic) circuits
  • 3.4.5 Use of ink jet technology
  • 3.5 Characterization of materials for RF and microwave circuits
  • 3.5.1 Measurement of dielectric loss and dielectric constant
  • 3.5.1.1 Cavity resonators
  • 3.5.1.2 Dielectric characterization by cavity perturbation
  • 3.5.1.3 Use of the split post dielectric resonator (SPDR)
  • 3.5.1.4 Open-resonator
  • 3.5.1.5 Free-space transmission measurements
  • 3.5.2 Measurement of planar line properties
  • 3.5.2.1 The microstrip resonant ring
  • 3.5.2.2 Non-resonant lines
  • 3.5.3 Physical properties of microstrip lines
  • 3.6 Supplementary problems
  • references
  • 4. Planar Circuit Design II: Refinements to basic designs
  • 9. Microwave Small-Signal Amplifiers
  • 9.1 Introduction
  • 9.2 Conditions for matching
  • 9.3 Distributed (microstrip) matching networks
  • 9.4 DC biasing circuits
  • 9.5 Microwave transistor packages
  • 9.6 Typical hybrid amplifier
  • 9.7 DC finger breaks
  • 9.8 Constant gain circles
  • 9.9 Stability circles
  • 9.10 Noise circles
  • 9.11 Low-noise amplifier design
  • 9.12 Simultaneous conjugate match
  • 9.13 Broadband matching
  • 9.14 Summary
  • 9.15 Supplementary problems
  • References
  • 10. Switches and Phase Shifters
  • 10.1 Introduction
  • 10.2 Switches
  • 10.2.1 PIN diodes
  • 10.2.2 FETs (Field Effect Transistors)
  • 10.2.3 MEMS (Microelectromechanical Systems)
  • 10.2.4 IPCS (Inline Phase Change Switch) devices
  • 10.3 Digital phase shifters
  • 10.3.1 Switched-path phase shifter
  • 10.3.2 Loaded-line phase shifter
  • 10.3.3 Reflection-type phase shifter
  • 10.3.4 Schiffman 90° phase shifter
  • 10.3.5 Single switch phase shifter
  • 10.4 Supplementary problems
  • References