Battery Management System for Future Electric Vehicles

The future of electric vehicles relies nearly entirely on the design, monitoring, and control of the vehicle battery and its associated systems. Along with an initial optimal design of the cell/pack-level structure, the runtime performance of the battery needs to be continuously monitored and optimi...

Full description

Bibliographic Details
Main Author: Söffker, Dirk
Other Authors: Moulik, Bedatri
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
N/a
Ann
Soc
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 03439nma a2200865 u 4500
001 EB001992620
003 EBX01000000000000001155522
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a 9783039433506 
020 |a books978-3-03943-351-3 
020 |a 9783039433513 
100 1 |a Söffker, Dirk 
245 0 0 |a Battery Management System for Future Electric Vehicles  |h Elektronische Ressource 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (154 p.) 
653 |a particle swarm optimization 
653 |a renewable energy sources 
653 |a microgrid 
653 |a AUKF 
653 |a dynamic response 
653 |a coulomb efficiency 
653 |a n/a 
653 |a ANN 
653 |a model parameter optimization 
653 |a second-order RC model 
653 |a small-signal modeling 
653 |a cooperative optimization 
653 |a hybrid energy storage 
653 |a History of engineering and technology / bicssc 
653 |a Butler-Volmer equation 
653 |a air-cooled BTMS 
653 |a battery management system 
653 |a joint estimation 
653 |a LiFePO4 batteries 
653 |a state of charge (SOC) 
653 |a electric vehicle 
653 |a electric vehicles 
653 |a state of charge (SoC) 
653 |a measurement statistic uncertainty 
653 |a economic dispatching 
653 |a torque and battery distribution 
653 |a state-of-charge 
653 |a compact lithium ion battery module 
653 |a battery management 
653 |a variational Bayesian approximation 
653 |a control 
653 |a wireless power 
653 |a stability 
653 |a battery electric vehicles 
653 |a Arrhenius 
653 |a SOC 
653 |a battery energy storage system 
653 |a back propagation neural network (BPNN) 
653 |a dual extended Kalman filter (DEKF) 
653 |a capacity allocation 
653 |a Peukert 
653 |a lithium-ion battery 
700 1 |a Moulik, Bedatri 
700 1 |a Söffker, Dirk 
700 1 |a Moulik, Bedatri 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
024 8 |a 10.3390/books978-3-03943-351-3 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/3061  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/69272  |z DOAB: description of the publication 
082 0 |a 900 
082 0 |a 333 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
082 0 |a 330 
520 |a The future of electric vehicles relies nearly entirely on the design, monitoring, and control of the vehicle battery and its associated systems. Along with an initial optimal design of the cell/pack-level structure, the runtime performance of the battery needs to be continuously monitored and optimized for a safe and reliable operation and prolonged life. Improved charging techniques need to be developed to protect and preserve the battery. The scope of this Special Issue is to address all the above issues by promoting innovative design concepts, modeling and state estimation techniques, charging/discharging management, and hybridization with other storage components.