Structural Health Monitoring of Large Structures Using Acoustic Emission-Case Histories

Acoustic emission (AE) techniques have successfully been used for assuring the structural integrity of large rocket motorcases since 1963, and their uses have expanded to ever larger structures, especially as structural health monitoring (SHM) of large structures has become the most urgent task for...

Full description

Bibliographic Details
Main Author: Ono, Kanji
Other Authors: Shiotani, Tomoki, Wevers, Martine, Hamstad, Marvin A.
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
N/a
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04866nma a2201177 u 4500
001 EB001992566
003 EBX01000000000000001155468
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a 9783039284757 
020 |a 9783039284740 
020 |a books978-3-03928-475-7 
100 1 |a Ono, Kanji 
245 0 0 |a Structural Health Monitoring of Large Structures Using Acoustic Emission-Case Histories  |h Elektronische Ressource 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (298 p.) 
653 |a time series analysis 
653 |a non-destructive testing 
653 |a mines 
653 |a remote monitoring 
653 |a structural diagnosis 
653 |a weight estimation 
653 |a cooling cycles 
653 |a multiplet 
653 |a repeating earthquake 
653 |a embrittlement temperatures 
653 |a n/a 
653 |a nuclear facilities 
653 |a outlier 
653 |a composites 
653 |a nondestructive testing 
653 |a 2011 Tohoku earthquake 
653 |a crustal movement 
653 |a acoustic emission 
653 |a recycled asphalt pavements 
653 |a critical phenomena 
653 |a gas adsorber 
653 |a History of engineering and technology / bicssc 
653 |a crack growth 
653 |a corrosion 
653 |a alkali-silica reaction 
653 |a asphalt pavements 
653 |a host rock 
653 |a dragline 
653 |a bridges 
653 |a recycled asphalt shingles 
653 |a fatigue life prediction 
653 |a structural design 
653 |a part qualification 
653 |a 2D-MUSIC 
653 |a reliability 
653 |a in situ acoustic emission (AE) monitoring 
653 |a impact localization 
653 |a vibration 
653 |a non-destructive methods (NDT) 
653 |a high-rate dynamics 
653 |a acoustic emission swarm 
653 |a high temperature 
653 |a thermal cracking 
653 |a source location 
653 |a confinement 
653 |a signal processing 
653 |a b-value 
653 |a structural health monitoring 
653 |a rotary kiln 
653 |a attenuation 
653 |a bridge 
653 |a sensing 
653 |a nondestructive evaluation (NDE) 
653 |a optimized EEMD 
653 |a time difference of arrival 
653 |a acoustic emission (AE) 
653 |a pattern recognition 
653 |a structural integrity 
653 |a damage evaluation 
653 |a beam 
653 |a composite structure 
653 |a uncertainty analysis 
653 |a diagnostic methods 
653 |a structural health monitoring (SHM) 
653 |a hydrotreater 
653 |a natural time 
653 |a closed-form solution 
700 1 |a Shiotani, Tomoki 
700 1 |a Wevers, Martine 
700 1 |a Hamstad, Marvin A. 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-03928-475-7 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/69325  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/3117  |7 0  |x Verlag  |3 Volltext 
082 0 |a 900 
082 0 |a 610 
082 0 |a 333 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
082 0 |a 780 
520 |a Acoustic emission (AE) techniques have successfully been used for assuring the structural integrity of large rocket motorcases since 1963, and their uses have expanded to ever larger structures, especially as structural health monitoring (SHM) of large structures has become the most urgent task for engineering communities around the world. The needs for advanced AE monitoring methods are felt keenly by those dealing with aging infrastructures. Many publications have appeared covering various aspects of AE techniques, but documentation of actual applications of AE techniques has been mostly limited to reports of successful results without technical details that allow objective evaluation of the results. There are some exceptions in the literature. In this Special Issue of the Acoustics section of Applied Sciences, we seek contributions covering these exceptions cited here. Here, we seek contributions describing case histories of AE applications to large structures that have achieved the goals of SHM by providing adequate technical information supporting the success stories. Types of structures can include aerospace and geological structures, bridges, buildings, factories, maritime facilities, off-shore structures, etc. Experiences with AE monitoring methods designed and proven for large stru