A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales

The grain microstructure and damage mechanisms at the grain level are the key factors that influence fatigue of metals at small scales. This is addressed in this work by establishing a new micro-mechanical model for prediction of multiaxial high cycle fatigue (HCF) at a length scale of 5-100?m. The...

Full description

Bibliographic Details
Main Author: Eslami, Reza
Format: eBook
Language:English
Published: KIT Scientific Publishing 2017
Series:Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie
Subjects:
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
Description
Summary:The grain microstructure and damage mechanisms at the grain level are the key factors that influence fatigue of metals at small scales. This is addressed in this work by establishing a new micro-mechanical model for prediction of multiaxial high cycle fatigue (HCF) at a length scale of 5-100?m. The HCF model considers elasto-plastic behavior of metals at the grain level and microstructural parameters, specifically the grain size and the grain orientation.
Item Description:Creative Commons (cc), https://creativecommons.org/licenses/by-sa/4.0/
Physical Description:1 electronic resource (X, 112 p. p.)
ISBN:1000059741
9783731505839