Nonlinear Dynamics and Entropy of Complex Systems with Hidden and Self-excited Attractors

In recent years, entropy has been used as a measure of the degree of chaos in dynamical systems. Thus, it is important to study entropy in nonlinear systems. Moreover, there has been increasing interest in the last few years regarding the novel classification of nonlinear dynamical systems including...

Full description

Bibliographic Details
Main Author: Kengne, Jacques
Other Authors: Munoz-Pacheco, Jesus M., Rajagopal, Karthikeyan, Jafari, Sajad
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
Description
Summary:In recent years, entropy has been used as a measure of the degree of chaos in dynamical systems. Thus, it is important to study entropy in nonlinear systems. Moreover, there has been increasing interest in the last few years regarding the novel classification of nonlinear dynamical systems including two kinds of attractors: self-excited attractors and hidden attractors. The localization of self-excited attractors by applying a standard computational procedure is straightforward. In systems with hidden attractors, however, a specific computational procedure must be developed, since equilibrium points do not help in the localization of hidden attractors. Some examples of this kind of system are chaotic dynamical systems with no equilibrium points; with only stable equilibria, curves of equilibria, and surfaces of equilibria; and with non-hyperbolic equilibria. There is evidence that hidden attractors play a vital role in various fields ranging from phase-locked loops, oscillators, describing convective fluid motion, drilling systems, information theory, cryptography, and multilevel DC/DC converters. This Special Issue is a collection of the latest scientific trends on the advanced topics of dynamics, entropy, fractional order calculus, and applications in complex systems with self-excited attractors and hidden attractors.
Item Description:Creative Commons (cc), https://creativecommons.org/licenses/by-nc-nd/4.0/
Physical Description:1 electronic resource (290 p.)
ISBN:9783038978992
9783038978985
books978-3-03897-899-2