Linear Estimation in Interconnected Sensor Systems with Information Constraints

A ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize...

Full description

Bibliographic Details
Main Author: Reinhardt, Marc
Format: eBook
Language:English
Published: KIT Scientific Publishing 2015
Series:Karlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory
Subjects:
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 01876nma a2200361 u 4500
001 EB001982486
003 EBX01000000000000001145388
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a 9783731503422 
020 |a 1000045577 
100 1 |a Reinhardt, Marc 
245 0 0 |a Linear Estimation in Interconnected Sensor Systems with Information Constraints  |h Elektronische Ressource 
260 |b KIT Scientific Publishing  |c 2015 
300 |a 1 electronic resource (XVII, 227 p. p.) 
653 |a sensor networks 
653 |a distributed systems 
653 |a Verteilte SystemsData fusion 
653 |a Schätztheorie 
653 |a Sensornetze 
653 |a Kalman Filter 
653 |a Datenfusion 
653 |a Kalman filtering 
653 |a estimation theory 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
490 0 |a Karlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by-sa/4.0/ 
024 8 |a 10.5445/KSP/1000045577 
856 4 0 |u https://www.ksp.kit.edu/9783731503422  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/51747  |z DOAB: description of the publication 
520 |a A ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize the error of estimates about the unknown state. Methods for the reconstruction of dependencies are proposed and novel approaches for the distributed processing of noisy data are developed.