Green Synthesis of Nanomaterials

Nanomaterials possess astonishing physical and chemical properties. They play a key role in the development of novel and effective drugs, catalysts, sensors, and pesticides, to cite just a few examples. Notably, the synthesis of nanomaterials is usually achieved with chemical and physical methods ne...

Full description

Bibliographic Details
Main Author: Benelli, Giovanni
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
N/a
Tem
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04087nma a2201093 u 4500
001 EB001980310
003 EBX01000000000000001143212
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a books978-3-03921-787-8 
020 |a 9783039217878 
020 |a 9783039217861 
100 1 |a Benelli, Giovanni 
245 0 0 |a Green Synthesis of Nanomaterials  |h Elektronische Ressource 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (224 p.) 
653 |a in vitro testing 
653 |a biocatalysis 
653 |a gum kondagogu 
653 |a antimicrobial 
653 |a silver nanoparticles 
653 |a n/a 
653 |a palladium nanoparticles 
653 |a methylene blue 
653 |a cell proliferation 
653 |a Desulfovibrio desulfuricans 
653 |a chitosan 
653 |a ionic nanocomplexes 
653 |a magnetic nanomaterials 
653 |a enzyme immobilization 
653 |a self-assembly 
653 |a plasma 
653 |a sponges 
653 |a hybrid nanoflowers 
653 |a filariasis 
653 |a polyol-assisted fluoride ions slow-release strategy 
653 |a larvicides 
653 |a poly-L-lactic acid 
653 |a hyaluronic acid 
653 |a Escherichia coli 
653 |a insecticides 
653 |a TEM 
653 |a non-cytotoxic 
653 |a ultrasonic dispersing (USD) 
653 |a microwave energy 
653 |a green synthesis 
653 |a nanostructured 
653 |a hollow carbon spheres 
653 |a functionalization 
653 |a anti-fungal 
653 |a cacao 
653 |a energy density 
653 |a solid carbon spheres 
653 |a carbon spheres 
653 |a X-ray photoelectron spectroscopy 
653 |a polyarginine 
653 |a graphene oxide 
653 |a nanomaterials (NMs) 
653 |a Biology, life sciences / bicssc 
653 |a ZnO NPs 
653 |a agricultural pests 
653 |a microwave injured cells 
653 |a larvicidal 
653 |a Raman spectroscopy 
653 |a crystallographic phase control 
653 |a solvothermal synthesis 
653 |a Scadoxus multiflorus 
653 |a CuInS2 
653 |a photocatalysis 
653 |a NaYF4 mesocrystals 
653 |a reduced graphene oxide 
653 |a CVD process 
653 |a leaf 
653 |a mesoporous materials 
653 |a dengue 
653 |a mosquito control 
653 |a synthetic amorphous silica (SAS) 
653 |a electrical conductivity 
653 |a ovicidal 
653 |a lipase 
653 |a sample preparation 
653 |a time dependence 
653 |a stored product insects 
653 |a titanium dioxide nanoparticles 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by-nc-nd/4.0/ 
028 5 0 |a 10.3390/books978-3-03921-787-8 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/48895  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/1800  |7 0  |x Verlag  |3 Volltext 
082 0 |a 333 
082 0 |a 700 
520 |a Nanomaterials possess astonishing physical and chemical properties. They play a key role in the development of novel and effective drugs, catalysts, sensors, and pesticides, to cite just a few examples. Notably, the synthesis of nanomaterials is usually achieved with chemical and physical methods needing the use of extremely toxic chemicals or high-energy inputs. To move towards more eco-friendly processes, researchers have recently focused on so-called "green synthesis", where microbial, animal-, and plant-borne compounds can be used as cheap reducing and stabilizing agents to fabricate nanomaterials. Green synthesis routes are cheap, environmentally sustainable, and can lead to the fabrication of nano-objects with controlled sizes and shapes-two key features determining their bioactivity.