First-Principles Prediction of Structures and Properties in Crystals

The term "first-principles calculations" is a synonym for the numerical determination of the electronic structure of atoms, molecules, clusters, or materials from 'first principles', i.e., without any approximations to the underlying quantum-mechanical equations. Although numerou...

Full description

Bibliographic Details
Main Author: Kurzydlowski, Dominik
Other Authors: Hermann, Andreas
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
N/a
Dft
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 03570nma a2200781 u 4500
001 EB001979397
003 EBX01000000000000001142299
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a books978-3-03921-671-0 
020 |a 9783039216710 
020 |a 9783039216703 
100 1 |a Kurzydlowski, Dominik 
245 0 0 |a First-Principles Prediction of Structures and Properties in Crystals  |h Elektronische Ressource 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (128 p.) 
653 |a half-Heusler alloy 
653 |a semihard materials 
653 |a battery materials 
653 |a genetic algorithm 
653 |a charged defects 
653 |a point defects 
653 |a n/a 
653 |a DFT 
653 |a Heusler alloy 
653 |a structure prediction 
653 |a density functional theory 
653 |a indium arsenide 
653 |a thermoelectricity 
653 |a ab initio calculations 
653 |a magnetic materials 
653 |a electrical engineering 
653 |a silver 
653 |a Ir-based intermetallics 
653 |a electronic properties 
653 |a van der Waals corrections 
653 |a chlorine 
653 |a semiconductors 
653 |a ab initio 
653 |a magnetic Lennard-Jones 
653 |a high-pressure 
653 |a global optimisation 
653 |a first-principles 
653 |a structural fingerprint 
653 |a refractory metals 
653 |a crystal structure 
653 |a formation energy 
653 |a magnetic properties 
653 |a superconductivity 
653 |a learning algorithms 
653 |a elastic properties 
653 |a optical properties 
653 |a molecular crystals 
653 |a Chemistry / bicssc 
653 |a crystal structure prediction 
653 |a electronic structure 
700 1 |a Hermann, Andreas 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by-nc-nd/4.0/ 
024 8 |a 10.3390/books978-3-03921-671-0 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/47707  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/1746  |7 0  |x Verlag  |3 Volltext 
082 0 |a 333 
082 0 |a 540 
082 0 |a 620 
520 |a The term "first-principles calculations" is a synonym for the numerical determination of the electronic structure of atoms, molecules, clusters, or materials from 'first principles', i.e., without any approximations to the underlying quantum-mechanical equations. Although numerous approximate approaches have been developed for small molecular systems since the late 1920s, it was not until the advent of the density functional theory (DFT) in the 1960s that accurate "first-principles" calculations could be conducted for crystalline materials. The rapid development of this method over the past two decades allowed it to evolve from an explanatory to a truly predictive tool. Yet, challenges remain: complex chemical compositions, variable external conditions (such as pressure), defects, or properties that rely on collective excitations-all represent computational and/or methodological bottlenecks. This Special Issue comprises a collection of papers that use DFT to tackle some of these challenges and thus highlight what can (and cannot yet) be achieved using first-principles calculations of crystals.