Analysis and Design of Hybrid Energy Storage Systems

Recent developments in storage device technologies, interface systems, control and monitoring techniques, or visualization and information technologies have driven the implementation of HESS in many industrial, commercial and domestic applications.

Bibliographic Details
Main Author: Garcia, Jorge
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04723nma a2200829 u 4500
001 EB001974661
003 EBX01000000000000001137563
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a 9783039286874 
020 |a books978-3-03928-687-4 
020 |a 9783039286867 
100 1 |a Garcia, Jorge 
245 0 0 |a Analysis and Design of Hybrid Energy Storage Systems  |h Elektronische Ressource 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (180 p.) 
653 |a renewable energy sources 
653 |a lithium-ion batteries 
653 |a microgrid 
653 |a active power control 
653 |a multiport 
653 |a state of charge 
653 |a hybrid storage systems 
653 |a energy storage 
653 |a power-line signaling 
653 |a energy storage technologies 
653 |a solar photovoltaic 
653 |a high gain converters 
653 |a History of engineering and technology / bicssc 
653 |a pumped storage 
653 |a buck-boost converter 
653 |a battery management system 
653 |a load modeling 
653 |a energy storage system 
653 |a smart home (SH) 
653 |a photovoltaic 
653 |a real coded genetic algorithm (RCGA) 
653 |a fault ride-through capability 
653 |a electric vehicle (EV) 
653 |a power quality 
653 |a storage 
653 |a power systems modeling 
653 |a DC power systems 
653 |a single-phase 
653 |a rail transportation power systems 
653 |a shipboard power systems 
653 |a micro combined heat and power (micro-CHP) system 
653 |a power electronic converters 
653 |a load flow analysis 
653 |a fuel cell (FC) 
653 |a ultracapacitors 
653 |a hybrid energy storage systems (HESSs) 
653 |a microgrids 
653 |a battery energy storage system (BESS) 
653 |a storage operation and maintenance costs 
653 |a hybrid 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by-nc-nd/4.0/ 
024 8 |a 10.3390/books978-3-03928-687-4 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/2217  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/40813  |z DOAB: description of the publication 
082 0 |a 900 
082 0 |a 333 
082 0 |a 380 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a Recent developments in storage device technologies, interface systems, control and monitoring techniques, or visualization and information technologies have driven the implementation of HESS in many industrial, commercial and domestic applications.  
520 |a This Special Issue focuses on the analysis, design and implementation of hybrid energy storage systems across a broad spectrum, encompassing different storage technologies (including electrochemical, capacitive, mechanical or mechanical storage devices), engineering branches (power electronics and control strategies; energy engineering; energy engineering; chemistry; modelling, simulation and emulation techniques; data analysis and algorithms; social and economic analysis; intelligent and Internet-of-Things (IoT) systems; and so on.), applications (energy systems, renewable energy generation, industrial applications, transportation, Uninterruptible Power Supplies (UPS) and critical load supply, etc.) and evaluation and performance (size and weight benefits, efficiency and power loss, economic analysis, environmental costs, etc.). 
520 |a The most important environmental challenge today's society is facing is to reduce the effects of CO2 emissions and global warming. Such an ambitious challenge can only be achieved through a holistic approach, capable of tackling the problem from a multidisciplinary point of view. One of the core technologies called to play a critical role in this approach is the use of energy storage systems. These systems enable, among other things, the balancing of the stochastic behavior of Renewable Sources and Distributed Generation in modern Energy Systems; the efficient supply of industrial and consumer loads; the development of efficient and clean transport; and the development of Nearly-Zero Energy Buildings (nZEB) and intelligent cities. Hybrid Energy Storage Systems (HESS) consist of two (or more) storage devices with complementary key characteristics, that are able to behave jointly with better performance than any of the technologies considered individually.