Creep and High Temperature Deformation of Metals and Alloys

By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys-known as creep-to the time-dependent processes taking place within the metals and alloys. High-temperature def...

Full description

Bibliographic Details
Main Author: Gariboldi, Elisabetta
Other Authors: Spigarelli, Stefano
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2019
Subjects:
P92
N/a
Dft
Tma
Fem
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04525nma a2201033 u 4500
001 EB001974038
003 EBX01000000000000001136940
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a books978-3-03921-879-0 
020 |a 9783039218783 
020 |a 9783039218790 
100 1 |a Gariboldi, Elisabetta 
245 0 0 |a Creep and High Temperature Deformation of Metals and Alloys  |h Elektronische Ressource 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (212 p.) 
653 |a multiaxiality 
653 |a P92 
653 |a strain rate sensitivity 
653 |a glide 
653 |a creep buckling 
653 |a creep ductility 
653 |a poly-crystal 
653 |a normalizing 
653 |a excess volume 
653 |a ferritic-martensitic steel 
653 |a water vapor 
653 |a superalloy 
653 |a cyclic softening 
653 |a n/a 
653 |a finite element method 
653 |a creep grain boundary 
653 |a stress exponent 
653 |a microstructural features 
653 |a DFT 
653 |a intrinsic ductility 
653 |a austenitic stainless steel 
653 |a constitutive equations 
653 |a elevated temperature 
653 |a cavitation 
653 |a simulate HAZ 
653 |a History of engineering and technology / bicssc 
653 |a modelling 
653 |a dislocation dynamics 
653 |a scanning electron microscopy 
653 |a activation energy 
653 |a creep 
653 |a creep rupture mechanism 
653 |a creep damage 
653 |a relaxation fatigue 
653 |a internal stress 
653 |a Gibbs free energy principle 
653 |a superalloy VAT 36 
653 |a superalloy VAT 32 
653 |a size effect 
653 |a P92 steel 
653 |a Larson-Miller parameter 
653 |a grain boundary cavitation 
653 |a MCrAlY 
653 |a high temperature 
653 |a Gr.91 
653 |a metallic glass 
653 |a visualization 
653 |a external pressure 
653 |a iron aluminides 
653 |a small angle neutron scattering 
653 |a bond coat 
653 |a TMA 
653 |a low cycle fatigue 
653 |a hydrogen 
653 |a FEM 
653 |a nanoindentation 
653 |a creep rupture 
653 |a solute atom 
653 |a residual stress 
700 1 |a Spigarelli, Stefano 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by-nc-nd/4.0/ 
028 5 0 |a 10.3390/books978-3-03921-879-0 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/1887  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/44233  |z DOAB: description of the publication 
082 0 |a 900 
082 0 |a 333 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys-known as creep-to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated.This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure-creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.