Advances in Hard-to-Cut Materials: Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity

The rapid growth of modern industry has resulted in a growing demand for construction materials with excellent operational properties. However, the improved features of these materials can significantly hinder their manufacture and, therefore, they can be defined as hard-to-cut. The main difficultie...

Full description

Bibliographic Details
Main Author: Królczyk, Grzegorz
Other Authors: Wojciechowski, Szymon, Maruda, Rados?aw W.
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Edc
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04795nma a2201141 u 4500
001 EB001970253
003 EBX01000000000000001133155
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a 9783039283552 
020 |a 9783039283545 
020 |a books978-3-03928-355-2 
100 1 |a Królczyk, Grzegorz 
245 0 0 |a Advances in Hard-to-Cut Materials: Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity  |h Elektronische Ressource 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (222 p.) 
653 |a surface roughness 
653 |a nano-cutting fluids 
653 |a tool wear 
653 |a aluminum alloy 6061 T6 
653 |a resin bond 
653 |a spark plasma sintering 
653 |a fused deposition modelling 
653 |a high speed milling (HSM) 
653 |a Nimonic-90 
653 |a titanium alloy 
653 |a cutting temperature 
653 |a surface 
653 |a wear 
653 |a aluminium matrix composite 
653 |a elastic modulus 
653 |a investment casting 
653 |a hole quality 
653 |a multiscale 
653 |a microhardness 
653 |a History of engineering and technology / bicssc 
653 |a dynamometer 
653 |a additive manufacturing 
653 |a mathematical modelling 
653 |a modeling 
653 |a hard-to-cut materials 
653 |a artificial neural network 
653 |a roughness 
653 |a ultrasonic elliptical vibration assisted cutting 
653 |a magnesium 
653 |a evolutionary algorithm 
653 |a roundness 
653 |a turning 
653 |a adhesion strength 
653 |a sapphire substrate 
653 |a alloy 
653 |a machining 
653 |a micro-groove 
653 |a power consumption 
653 |a hard turning 
653 |a prediction 
653 |a bioactivity 
653 |a EDC 
653 |a chips 
653 |a surface finish 
653 |a ultrasonically assisted turning 
653 |a material swelling and springback 
653 |a microhardness research 
653 |a SLM technology 
653 |a environmentally friendly 
653 |a corrosion resistance 
653 |a nickel-based alloys 
653 |a texture 
653 |a drilling 
653 |a burr 
653 |a microcracks 
653 |a nature inspired hybrid algorithm 
653 |a intelligent optimization 
653 |a abrasive machining 
653 |a forces 
653 |a porosity research 
653 |a mechanics 
653 |a optimization 
653 |a Ti-6Al-4V 
653 |a alloying 
653 |a surface integrity 
700 1 |a Wojciechowski, Szymon 
700 1 |a Maruda, Rados?aw W. 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by-nc-nd/4.0/ 
028 5 0 |a 10.3390/books978-3-03928-355-2 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/40288  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/2088  |7 0  |x Verlag  |3 Volltext 
082 0 |a 900 
082 0 |a 363 
082 0 |a 576 
082 0 |a 500 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a The rapid growth of modern industry has resulted in a growing demand for construction materials with excellent operational properties. However, the improved features of these materials can significantly hinder their manufacture and, therefore, they can be defined as hard-to-cut. The main difficulties during the manufacturing/processing of hard-to-cut materials are attributed especially to their high hardness and abrasion resistance, high strength at room or elevated temperatures, increased thermal conductivity, as well as resistance to oxidation and corrosion. Nowadays, the group of hard-to-cut materials is extensive and still expanding, which is attributed to the development of a novel manufacturing techniques (e.g., additive technologies). Currently, the group of hard-to-cut materials mainly includes hardened and stainless steels, titanium, cobalt and nickel alloys, composites, ceramics, as well as the hard clads fabricated by additive techniques. This Special Issue, "Advances in Hard-to-Cut Materials: Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity", provides the collection of research papers regarding the various problems correlated with hard-to-cut materials. The analysis of these studies reveals the primary directions regarding the developments in manufacturing methods, characterization, and optimization of hard-to-cut materials.