Symmetry and Fluid Mechanics

Since the 1980s, attention has increased in the research of fluid mechanics due to its wide application in industry and phycology. Major advances have occurred in the modeling of key topics such Newtonian and non-Newtonian fluids, nanoparticles, thermal management, and physiological fluid phenomena...

Full description

Bibliographic Details
Main Author: Ellahi, Rehmat
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Mhd
Ham
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 06697nma a2201837 u 4500
001 EB001966623
003 EBX01000000000000001129525
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a 9783039284276 
020 |a books978-3-03928-427-6 
020 |a 9783039284269 
100 1 |a Ellahi, Rehmat 
245 0 0 |a Symmetry and Fluid Mechanics  |h Elektronische Ressource 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (446 p.) 
653 |a molecular diameter 
653 |a FDE-12 numerical method 
653 |a viscous fluid 
653 |a peristalsis 
653 |a dual solution 
653 |a SWCNT/MWCNT nanofluid 
653 |a Caputo-Fabrizio time-fractional derivative 
653 |a MHD 
653 |a analytical technique 
653 |a stretchable rotating disk 
653 |a thin elastic plate 
653 |a Hafnium particles 
653 |a OHAM 
653 |a nanofluids and particle shape effects 
653 |a HAM 
653 |a nonlinear stretching cylinder 
653 |a Darcy Forchheimer model 
653 |a shooting method 
653 |a unsteady rotating flow 
653 |a Laplace and Fourier transformations 
653 |a physiological fluid phenomena in biological systems 
653 |a SWCNTs 
653 |a Carreau fluid 
653 |a cylinder 
653 |a microchannel 
653 |a convective heat and mass transfer 
653 |a couple stress fluid 
653 |a CNTs (MWCNTs and SWCNTs) 
653 |a MWCNTs 
653 |a Newtonian heating 
653 |a nanofluid 
653 |a velocity slip 
653 |a slip coefficient 
653 |a laminar g-Jitter flow 
653 |a nanoparticle 
653 |a Casson fluid 
653 |a porous dissipation 
653 |a convective boundary condition 
653 |a slip 
653 |a viscous dissipation effect 
653 |a APCM technique 
653 |a PLK method 
653 |a GO-W/GO-EG nanofluids 
653 |a viscous dissipation 
653 |a steady laminar flow 
653 |a Darcy-Brinkman porous medium 
653 |a arched surface 
653 |a nanoparticles 
653 |a thermodynamics 
653 |a multiphase flow simulations 
653 |a oscillating shear stress 
653 |a Jefferey 
653 |a slip conditions 
653 |a mixed convection 
653 |a side walls 
653 |a solitary waves 
653 |a Keller-box method 
653 |a RK scheme 
653 |a compressible viscous flow 
653 |a microducts 
653 |a classical and fractional order problems 
653 |a nanofluids 
653 |a exponential sheet 
653 |a magnetic field 
653 |a Cattaneo-Christov heat flux model 
653 |a permeable sheet 
653 |a particle swarm optimization 
653 |a thin needle 
653 |a aqueous suspensions of CNT's 
653 |a stability analysis 
653 |a fractional order differential equations 
653 |a Newtonian and non-Newtonian fluids 
653 |a porous medium 
653 |a nonlinear thermal radiation 
653 |a inclined stretching sheet 
653 |a magnetohydrodynamic (MHD) 
653 |a steady and unsteady flow problems 
653 |a rotating rigid disk 
653 |a Lagrangian approach 
653 |a suction/injection 
653 |a rotating system 
653 |a stagnation point flow 
653 |a Al2O3 nanoparticles 
653 |a temperature dependent thermal conductivity 
653 |a heat generation 
653 |a History of engineering and technology / bicssc 
653 |a Marangoni convection 
653 |a heat source/sink 
653 |a homogeneous-heterogeneous reactions 
653 |a kernel gradient free 
653 |a stretching sheet 
653 |a uniform current 
653 |a nonlinear hydroelastic waves 
653 |a activation energy 
653 |a heat transfer 
653 |a symmetric linear equations 
653 |a generalized finite difference scheme 
653 |a laminar flow 
653 |a numerical solution 
653 |a Casson fluid model 
653 |a homogeneous/heterogeneous reactions 
653 |a isotherms 
653 |a Numerical technique 
653 |a finite volume method 
653 |a nanofuid 
653 |a Magnetohydrodynamic (MHD) 
653 |a Maxwell and Oldroyd-B fluids 
653 |a Knudsen number 
653 |a Permeable walls 
653 |a Magnetohydrodynamics (MHD) 
653 |a thermal radiation 
653 |a Oil/MWCNT nanofluid 
653 |a Couette-Poiseuille flow 
653 |a tapered channel 
653 |a convective heat boundary condition 
653 |a forced convection 
653 |a chemical reaction 
653 |a smart pumping for hemodialysis 
653 |a Jeffrey fluid 
653 |a artificial neural networks 
653 |a streamlines 
653 |a integer and non-integer order derivatives 
653 |a Cattaneo-Christov heat flux 
653 |a Nusselt number 
653 |a peristaltic transport 
653 |a stretched surface 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by-nc-nd/4.0/ 
028 5 0 |a 10.3390/books978-3-03928-427-6 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/2137  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/60380  |z DOAB: description of the publication 
082 0 |a 900 
082 0 |a 333 
082 0 |a 380 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a Since the 1980s, attention has increased in the research of fluid mechanics due to its wide application in industry and phycology. Major advances have occurred in the modeling of key topics such Newtonian and non-Newtonian fluids, nanoparticles, thermal management, and physiological fluid phenomena in biological systems, which have been published in this Special Issue on symmetry and fluid mechanics for Symmetry. Although, this book is not a formal textbook, it will be useful for university teachers, research students, and industrial researchers and for overcoming the difficulties that occur when considering the nonlinear governing equations. For such types of equations, obtaining an analytic or even a numerical solution is often more difficult. This book addresses this challenging job by outlining the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.