Power system analysis

Power System Analysis is a comprehensive text designed for an undergraduate course in electrical engineering. Written in a simple and easy-to-understand manner, the book introduces the reader to power system network matrices and power system steady-state stability analysis. The book contains in-dept...

Full description

Bibliographic Details
Main Author: Ramana, N. V.
Format: eBook
Language:English
Published: Noida, India Pearson 2011
Series:Always Learning
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
LEADER 09590nmm a2200505 u 4500
001 EB001939571
003 EBX01000000000000001102473
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210123 ||| eng
020 |a 8131755924 
020 |a 9788131755921 
020 |a 9788131793930 
020 |a 1299446450 
020 |a 8131793931 
050 4 |a TK1001 
100 1 |a Ramana, N. V. 
245 0 0 |a Power system analysis  |c N.V. Ramana 
260 |a Noida, India  |b Pearson  |c 2011 
300 |a 1 volume  |b illustrations 
505 0 |a Competitive Examination Questions -- Chapter 3: Power System Network Matrices-2 -- 3.1 Introduction -- 3.2 Partial Network -- 3.3 Case Studies in Zbus Algorithm -- 3.4 Algorithm for Formation of Bus Impedance Matrix-No Mutual Coupling between the Elements -- 3.4.1 Type-1 Modification -- 3.4.2 Type-2 Modification -- 3.4.3 Type-3 Modification -- 3.4.4 Type-4 Modification -- 3.4.5 MATLAB Program for Zbus Formation -- 3.5 Algorithm for the Formation of Zbus- Consideration of Mutually Coupled Elements -- 3.5.1 Type-1 and Type-2 Modifications -- 3.5.2 Type-3 and Type-4 Modifications -- 3.5.3 Summary of Formulas -- 3.6 Modifications In Zbus for Changes in the Network -- Questions from Previous Question Papers -- Competitive Examination Questions -- Chapter 4: Power Flow Studies-1 -- 4.1 Introduction -- 4.1.1 Basic Applications of Power Flow Studies and its Significance in Power System Operation and Control: -- 4.1.2 Data Preparation: -- 4.2 Network Modelling -- 4.3 Mathematical Modelling -- 4.3.1 Mathematical Model for Stage-1 Quantities -- 4.3.2 Mathematical Modeling for Stage-2 Quantities -- 4.4 Gauss-Seidel Iterative Method -- 4.5 Classification of Buses -- 4.5.1 PQ Bus or Load Bus -- 4.5.2 PV Bus or Generator Bus -- 4.5.3 Voltage Controlled Buses -- 4.5.4 Slack Bus/Swing Bus/Reference Bus -- 4.6 Case Studies in Power Flow Problem -- 4.7 Algorithm for Power Flow Solution by the Gauss-Seidel Method -- 4.7.1 Case-1: GS Method to obtain Bus Quantities when the PV Buses are Absent -- 4.7.2 Case-2: GS Method to obtain Bus Quantities when the PV Buses are Present -- 4.7.3 Flow Chart: Power Flow Solution by GS Method -- 4.8 Conclusion -- Questions from Previous Question Papers -- Competitive Examination Questions -- Chapter 5: Power Flow Studies-2 -- 5.1 Introduction -- 5.2 Newton-Raphson Method -- 5.2.1 NR Method for Single-Valued Functions 
505 0 |a Cover -- About the Author -- Contents -- Preface -- Chapter 1: Introduction -- 1.1 Power System Studies -- 1.1.1 Network Modelling Stage -- 1.1.2 Mathematical Modelling Stage -- 1.1.3 Solution Stage -- 1.2 Organisation of Text Book -- 1.3 Computer's Role in Power System Studies -- 1.4 Matlab Fundamentals -- 1.4.1 Basics of MATLAB -- Chapter 2: Power System Network Matrices-1 -- 2.1 Introduction -- 2.2 Graph of a Power System Network -- 2.3 Definitions -- 2.3.1 Graph -- 2.3.2 Planar and Non-Planar Graphs -- 2.3.3 Rank of a Graph -- 2.3.4 Oriented Graph -- 2.3.5 Sub-Graph -- 2.3.6 Path -- 2.3.7 Connected Graph -- 2.3.8 Tree -- 2.3.9 Co-Tree -- 2.3.10 Basic Loops or Fundamental f -Loops -- 2.3.11 Basic Cutsets or Fundamental f -Cutsets -- 2.4 Incidence Matrices -- 2.4.1 Element Node Incidence Matrix (Â ) -- 2.4.2 Bus Incidence Matrix (A) -- 2.4.3 Branch Path Incidence Matrix (P) -- 2.4.4 Basic Cutset (or) Fundamental Cutset Incidence Matrix (C) -- 2.4.5 Augmented or Tie Cutset Incidence Matrix (C) -- 2.4.6 Basic or Fundamental f -loop Incidence Matrix (L) -- 2.4.7 Augmented Loop Incidence Matrix L -- 2.5 Primitive Network -- 2.5.1 Primitive Network in Impedance Form -- 2.5.2 Primitive Network in Admittance Form -- 2.6 Network Equations and Network Matrices -- 2.7 Bus Admittance Matrix -- 2.7.1 Direct Inspection Method -- 2.7.2 Step-by-Step Procedure -- 2.8 Network Matrices by Singular Transformation Method -- 2.8.1 Bus Admittance Matrix -- 2.8.2 Branch Admittance Matrix -- 2.8.3 Loop Impedance Matrix or Admittance Matrix -- 2.9 Network Matrices by Non-Singular Transformation Method -- 2.9.1 Branch Admittance Matrix -- 2.9.2 Loop Impedance and Loop Admittance Matrix -- 2.9.3 Bus Admittance and Bus Impedance Matrices -- 2.9.4 Algorithm for Singular and Non-Singular Transformation Methods -- Questions from Previous Question Papers 
505 0 |a 7.4.2 Transformer Representation in the Three Sequence Networks -- 7.4.3 Transmission Line Representation -- 7.4.4 Summary of Sequence Networks -- 7.5 Unbalanced or Unsymmetrical Fault Analysis -- 7.5.1 Single Line-to-Ground Fault (SLG Fault) -- 7.5.2 Double Line Fault (LL Fault) -- 7.5.3 Double Line-to-Ground (LLG) Fault -- 7.5.4 Three-Phase Symmetrical Fault in Terms of Sequence Components -- 7.6 Comparison of SLG and 3-Phase Faults -- 7.7 Consideration of Pre-Fault Load Currents -- 7.8 Fault Calculations Using Bus Impedance Matrix -- 7.8.1 Three-Phase Symmetrical Fault -- 7.8.2 Single Line-to-Ground Fault -- 7.8.3 Double Line Fault (LL Fault) -- 7.8.4 Double Line-to-Ground Fault -- Questions from Previous Question Papers -- Competitive Examination Questions -- Chapter 8: Power System Steady-State Stability Analysis -- 8.1 Introduction -- 8.2 Forms of Power System Stability -- 8.2.1 Small Signal Analysis -- 8.2.2 Large Signal Analysis-Transient Stability -- 8.3 Physical Concept of Torque and Torque Angle -- 8.4 Power Angle Curve and Transfer Reactance -- 8.5 The Swing Equation -- 8.6 Modelling Issues in the Stability Analysis -- 8.6.1 Synchronous Machine Model -- 8.6.2 Power System Model -- 8.6.3 Multi-Machine System -- 8.7 Assumptions made in Steady-State Stability Analysis -- 8.8 Steady-State Stability Analysis -- 8.9 Methods to Improve Steady-State Stability -- Questions from Previous Question Papers -- Competitive Examination Questions -- Chapter 9: Transient Stability -- 9.1 Transient Stability-Equal Area Criterion -- 9.1.1 Mathematical Approach to EAC -- 9.1.2 Application of Equal Area Criterion -- 9.1.3 Determination of Critical Clearing Angle -- 9.1.4 Determination of Critical Clearing Time [tcr] -- 9.1.5 Determination of Transfer Reactance Before, During and After Fault Conditions 
505 0 |a 9.2 II Solution of the Swing Equation: Point-By-Point Method -- 9.3 Methods to Improve Transient Stability -- Questions from Previous Question Papers -- Competitive Examination Questions -- Answers to Selected Competitive Examination Questions -- Index 
505 0 |a 5.2.2 NR Method for Multi-Valued Function -- 5.3 Power Flow Solution by Newton-Raphson Method -- 5.3.1 NR Method when Bus Voltages are Expressed in the Polar Form -- 5.3.4 NR Method when Bus Voltages are Expressed in the Rectangular Form -- 5.3.5 Comparison of Gauss-Seidel and Newton-Raphson Method -- 5.4 Decoupled Newton Method -- 5.4.1 Algorithm for Decoupled Power Flow Method -- 5.5 Fast Decoupled Power Flow Method -- 5.5.1 Algorithm for Fast-Decoupled Power Flow Method -- 5.5.2 Comparison of NR, Decoupled and Fast Decoupled Power Flow Methods -- Questions from Previous Question Papers -- Competitive Examination Questions -- Chapter 6: Short-Circuit Analysis-1 (Symmetrical Fault Analysis) -- 6.1 Introduction -- 6.1.1 Applications of Short Circuit Study -- 6.2 Power System Representation -- 6.2.1 Description of the Single Line Diagram Representation -- 6.2.2 Assumptions made in Fault Calculations -- 6.2.3 Network Modeling -- 6.3 Per Unit Method -- 6.3.1 Selection of Base Values -- 6.3.2 Base Quantities -- 6.3.3 Advantages of the Per Unit Method -- 6.4 Symmetrical Fault Caculation -- 6.4.1 Thevenin's Equivalent Circuit -- 6.4.2 Calculation of Symmetrical Fault Currents -- 6.5 Current-Limiting Series Reactors -- 6.5.1 Generator Reactors -- 6.5.2 Feeder Reactors -- 6.5.3 Bus Bar Reactors -- 6.6 Consideration of Pre-Fault Load Current -- Questions from Previous Question Papers -- Competitive Examination Questions -- Chapter 7: Short-Circuit Analysis-2 (Unbalanced Fault Analysis) -- 7.1 Introduction -- 7.2 Symmetrical Components -- 7.2.1 Operator a -- 7.2.2 Sequence Components in Terms of Operator a -- 7.3 Sequence Impedances -- 7.3.1 Sequence Impedances of Individual Components -- 7.3.1 Summary of Sequence Components -- 7.4 Sequence Networks -- 7.4.1 Generator Representation in Three-Sequence Networks 
653 |a Electrical engineering / Textbooks 
653 |a System analysis 
653 |a Electric power systems / Design and construction 
653 |a Systems Analysis 
653 |a Electric power systems / Design and construction / fast 
653 |a systems analysis / aat 
653 |a Analyse de systèmes 
653 |a Electrical engineering / fast 
653 |a System analysis / fast 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OREILLY  |a O'Reilly 
490 0 |a Always Learning 
776 |z 1299446450 
776 |z 9781299446458 
776 |z 9788131755921 
856 4 0 |u https://learning.oreilly.com/library/view/~/9788131755921/?ar  |x Verlag  |3 Volltext 
082 0 |a 620 
082 0 |a 000 
082 0 |a 745.4 
520 |a Power System Analysis is a comprehensive text designed for an undergraduate course in electrical engineering. Written in a simple and easy-to-understand manner, the book introduces the reader to power system network matrices and power system steady-state stability analysis. The book contains in-depth coverage of symmetrical fault analysis and unbalanced fault analysis; exclusive chapters on power flow studies; a comprehensive chapter on transient stability; precise explanation supported by suitable examples and is replete with objective questions and review questions