Deep learning with Python

Deep Learning with Python is structured around a series of practical code examples that illustrate each new concept introduced and demonstrate best practices. By the time you reach the end of this book, you will have become a Keras expert and will be able to apply deep learning in your own projects

Bibliographic Details
Main Author: Chollet, François
Format: eBook
Language:English
Published: Shelter Island, NY Manning Publications 2018
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
LEADER 11219nmm a2200529 u 4500
001 EB001916923
003 EBX01000000000000001079825
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210123 ||| eng
020 |a 9781638352044 
020 |a 9781617294433 
020 |a 1617294438 
050 4 |a QA76.73.P98 
100 1 |a Chollet, François 
245 0 0 |a Deep learning with Python  |c François Chollet 
260 |a Shelter Island, NY  |b Manning Publications  |c 2018 
300 |a 361 pages  |b illustrations 
505 0 |a 5.2.5. Using data augmentation -- 5.3. Using a pretrained convnet -- 5.3.1. Feature extraction -- 5.3.2. Fine-tuning -- 5.3.3. Wrapping up -- 5.4. Visualizing what convnets learn -- 5.4.1. Visualizing intermediate activations -- 5.4.2. Visualizing convnet filters -- 5.4.3. Visualizing heatmaps of class activation -- Chapter 6. Deep learning for text and sequences -- 6.1. Working with text data -- 6.1.1. One-hot encoding of words and characters -- 6.1.2. Using word embeddings -- 6.1.3. Putting it all together: from raw text to word embeddings -- 6.1.4. Wrapping up -- 6.2. Understanding recurrent neural networks -- 6.2.1. A recurrent layer in Keras -- 6.2.2. Understanding the LSTM and GRU layers -- 6.2.3. A concrete LSTM example in Keras -- 6.2.4. Wrapping up -- 6.3. Advanced use of recurrent neural networks -- 6.3.1. A temperature-forecasting problem -- 6.3.2. Preparing the data -- 6.3.3. A common-sense, non-machine-learning baseline -- 6.3.4. A basic machine-learning approach -- 6.3.5. A first recurrent baseline -- 6.3.6. Using recurrent dropout to fight overfitting -- 6.3.7. Stacking recurrent layers -- 6.3.8. Using bidirectional RNNs -- 6.3.9. Going even further -- 6.3.10. Wrapping up -- 6.4. Sequence processing with convnets -- 6.4.1. Understanding 1D convolution for sequence data -- 6.4.2. 1D pooling for sequence data -- 6.4.3. Implementing a 1D convnet -- 6.4.4. Combining CNNs and RNNs to process long sequences -- 6.4.5. Wrapping up -- Chapter 7. Advanced deep-learning best practices -- 7.1. Going beyond the Sequential model: the Keras functional API -- 7.1.1. Introduction to the functional API -- 7.1.2. Multi-input models -- 7.1.3. Multi-output models -- 7.1.4. Directed acyclic graphs of layers -- 7.1.5. Layer weight sharing -- 7.1.6. Models as layers -- 7.1.7. Wrapping up 
505 0 |a 7.2. Inspecting and monitoring deep-learning models using Keras callba- acks and TensorBoard -- 7.2.1. Using callbacks to act on a model during training -- 7.2.2. Introduction to TensorBoard: the TensorFlow visualization framework -- 7.2.3. Wrapping up -- 7.3. Getting the most out of your models -- 7.3.1. Advanced architecture patterns -- 7.3.2. Hyperparameter optimization -- 7.3.3. Model ensembling -- 7.3.4. Wrapping up -- Chapter 8. Generative deep learning -- 8.1. Text generation with LSTM -- 8.1.1. A brief history of generative recurrent networks -- 8.1.2. How do you generate sequence data? -- 8.1.3. The importance of the sampling strategy -- 8.1.4. Implementing character-level LSTM text generation -- 8.1.5. Wrapping up -- 8.2. DeepDream -- 8.2.1. Implementing DeepDream in Keras -- 8.2.2. Wrapping up -- 8.3. Neural style transfer -- 8.3.1. The content loss -- 8.3.2. The style loss -- 8.3.3. Neural style transfer in Keras -- 8.3.4. Wrapping up -- 8.4. Generating images with variational autoencoders -- 8.4.1. Sampling from latent spaces of images -- 8.4.2. Concept vectors for image editing -- 8.4.3. Variational autoencoders -- 8.4.4. Wrapping up -- 8.5. Introduction to generative adversarial networks -- 8.5.1. A schematic GAN implementation -- 8.5.2. A bag of tricks -- 8.5.3. The generator -- 8.5.4. The discriminator -- 8.5.5. The adversarial network -- 8.5.6. How to train your DCGAN -- 8.5.7. Wrapping up -- Chapter 9. Conclusions -- 9.1. Key concepts in review -- 9.1.1. Various approaches to AI -- 9.1.2. What makes deep learning special within the field of machine learning -- 9.1.3. How to think about deep learning -- 9.1.4. Key enabling technologies -- 9.1.5. The universal machine-learning workflow -- 9.1.6. Key network architectures -- 9.1.7. The space of possibilities -- 9.2. The limitations of deep learning 
505 0 |a Includes bibliographical references and index 
505 0 |a 2.2.11. Image data -- 2.2.12. Video data -- 2.3. The gears of neural networks: tensor operations -- 2.3.1. Element-wise operations -- 2.3.2. Broadcasting -- 2.3.3. Tensor dot -- 2.3.4. Tensor reshaping -- 2.3.5. Geometric interpretation of tensor operations -- 2.3.6. A geometric interpretation of deep learning -- 2.4. The engine of neural networks: gradient-based optimization -- 2.4.1. What's a derivative? -- 2.4.2. Derivative of a tensor operation: the gradient -- 2.4.3. Stochastic gradient descent -- 2.4.4. Chaining derivatives: the Backpropagation algorithm -- 2.5. Looking back at our first example -- Chapter 3. Getting started with neural networks -- 3.1. Anatomy of a neural network -- 3.1.1. Layers: the building blocks of deep learning -- 3.1.2. Models: networks of layers -- 3.1.3. Loss functions and optimizers: keys to configuring the learning process -- 3.2. Introduction to Keras -- 3.2.1. Keras, TensorFlow, Theano, and CNTK -- 3.2.2. Developing with Keras: a quick overview -- 3.3. Setting up a deep-learning workstation -- 3.3.1. Jupyter notebooks: the preferred way to run deep-learning experiments -- 3.3.2. Getting Keras running: two options -- 3.3.3. Running deep-learning jobs in the cloud: pros and cons -- 3.3.4. What is the best GPU for deep learning? -- 3.4. Classifying movie reviews: a binary classification example -- 3.4.1. The IMDB dataset -- 3.4.2. Preparing the data -- 3.4.3. Building your network -- 3.4.4. Validating your approach -- 3.4.5. Using a trained network to generate predictions on new data -- 3.4.6. Further experiments -- 3.4.7. Wrapping up -- 3.5. Classifying newswires: a multiclass classification example -- 3.5.1. The Reuters dataset -- 3.5.2. Preparing the data -- 3.5.3. Building your network -- 3.5.4. Validating your approach -- 3.5.5. Generating predictions on new data 
505 0 |a Intro -- Deep Learning with Python -- François Chollet -- Copyright -- Brief Table of Contents -- Table of Contents -- Preface -- Acknowledgments -- About this Book -- Who should read this book -- Roadmap -- Software/hardware requirements -- Source code -- Book forum -- About the Author -- About the Cover -- Part 1. Fundamentals of deep learning -- Chapter 1. What is deep learning? -- 1.1. Artificial intelligence, machine learning, and deep learning -- 1.1.1. Artificial intelligence -- 1.1.2. Machine learning -- 1.1.3. Learning representations from data -- 1.1.4. The "deep" in deep learning -- 1.1.5. Understanding how deep learning works, in three figures -- 1.1.6. What deep learning has achieved so far -- 1.1.7. Don't believe the short-term hype -- 1.1.8. The promise of AI -- 1.2. Before deep learning: a brief history of machine learning -- 1.2.1. Probabilistic modeling -- 1.2.2. Early neural networks -- 1.2.3. Kernel methods -- 1.2.4. Decision trees, random forests, and gradient boosting machines -- 1.2.5. Back to neural networks -- 1.2.6. What makes deep learning different -- 1.2.7. The modern machine-learning landscape -- 1.3. Why deep learning? Why now? -- 1.3.1. Hardware -- 1.3.2. Data -- 1.3.3. Algorithms -- 1.3.4. A new wave of investment -- 1.3.5. The democratization of deep learning -- 1.3.6. Will it last? -- Chapter 2. Before we begin: the mathematical building blocks of neural networks -- 2.1. A first look at a neural network -- 2.2. Data representations for neural networks -- 2.2.1. Scalars (0D tensors) -- 2.2.2. Vectors (1D tensors) -- 2.2.3. Matrices (2D tensors) -- 2.2.4. 3D tensors and higher-dimensional tensors -- 2.2.5. Key attributes -- 2.2.6. Manipulating tensors in Numpy -- 2.2.7. The notion of data batches -- 2.2.8. Real-world examples of data tensors -- 2.2.9. Vector data -- 2.2.10. Timeseries data or sequence data 
505 0 |a 3.5.6. A different way to handle the labels and the loss -- 3.5.7. The importance of having sufficiently large intermediate layers -- 3.5.8. Further experiments -- 3.5.9. Wrapping up -- 3.6. Predicting house prices: a regression example -- 3.6.1. The Boston Housing Price dataset -- 3.6.2. Preparing the data -- 3.6.3. Building your network -- 3.6.4. Validating your approach using K-fold validation -- 3.6.5. Wrapping up -- Chapter 4. Fundamentals of machine learning -- 4.1. Four branches of machine learning -- 4.1.1. Supervised learning -- 4.1.2. Unsupervised learning -- 4.1.3. Self-supervised learning -- 4.1.4. Reinforcement learning -- 4.2. Evaluating machine-learning models -- 4.2.1. Training, validation, and test sets -- 4.2.2. Things to keep in mind -- 4.3. Data preprocessing, feature engineering, and feature learning -- 4.3.1. Data preprocessing for neural networks -- 4.3.2. Feature engineering -- 4.4. Overfitting and underfitting -- 4.4.1. Reducing the network's size -- 4.4.2. Adding weight regularization -- 4.4.3. Adding dropout -- 4.5. The universal workflow of machine learning -- 4.5.1. Defining the problem and assembling a dataset -- 4.5.2. Choosing a measure of success -- 4.5.3. Deciding on an evaluation protocol -- 4.5.4. Preparing your data -- 4.5.5. Developing a model that does better than a baseline -- 4.5.6. Scaling up: developing a model that overfits -- 4.5.7. Regularizing your model and tuning your hyperparameters -- Part 2. Deep learning in practice -- Chapter 5. Deep learning for computer vision -- 5.1. Introduction to convnets -- 5.1.1. The convolution operation -- 5.1.2. The max-pooling operation -- 5.2. Training a convnet from scratch on a small dataset -- 5.2.1. The relevance of deep learning for small-data problems -- 5.2.2. Downloading the data -- 5.2.3. Building your network -- 5.2.4. Data preprocessing 
653 |a Réseaux neuronaux (Informatique) 
653 |a Neural networks (Computer science) / fast 
653 |a Machine learning / http://id.loc.gov/authorities/subjects/sh85079324 
653 |a Python (Computer program language) / fast 
653 |a Python (Computer program language) / http://id.loc.gov/authorities/subjects/sh96008834 
653 |a Neural networks (Computer science) / http://id.loc.gov/authorities/subjects/sh90001937 
653 |a Machine learning / fast 
653 |a Apprentissage automatique 
653 |a Python (Langage de programmation) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OREILLY  |a O'Reilly 
500 |a Includes index 
776 |z 1617294438 
776 |z 9781638352044 
776 |z 978161729443 
776 |z 1617294438 
776 |z 1638352046 
776 |z 9781617294433 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781617294433/?ar  |x Verlag  |3 Volltext 
082 0 |a 331 
082 0 |a 500 
082 0 |a 005.13/3 
520 |a Deep Learning with Python is structured around a series of practical code examples that illustrate each new concept introduced and demonstrate best practices. By the time you reach the end of this book, you will have become a Keras expert and will be able to apply deep learning in your own projects