Hybrid Intelligent Technologies in Energy Demand Forecasting
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechani...
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Cham
Springer International Publishing
2020, 2020
|
Edition: | 1st ed. 2020 |
Subjects: | |
Online Access: | |
Collection: | Springer eBooks 2005- - Collection details see MPG.ReNa |
Summary: | This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models |
---|---|
Physical Description: | XII, 179 p. 60 illus., 51 illus. in color online resource |
ISBN: | 9783030365295 |