Non-linear modeling and analysis of solids and structures

This book presents a theoretical treatment of nonlinear behaviour of solids and structures in such a way that it is suitable for numerical computation, typically using the Finite Element Method. Starting out from elementary concepts, the author systematically uses the principle of virtual work, init...

Full description

Bibliographic Details
Main Author: Krenk, S.
Format: eBook
Language:English
Published: Cambridge Cambridge University Press 2009
Subjects:
Online Access:
Collection: Cambridge Books Online - Collection details see MPG.ReNa
LEADER 01985nmm a2200289 u 4500
001 EB001888082
003 EBX01000000000000001051443
005 00000000000000.0
007 cr|||||||||||||||||||||
008 200106 ||| eng
020 |a 9780511812163 
050 4 |a TA645 
100 1 |a Krenk, S. 
245 0 0 |a Non-linear modeling and analysis of solids and structures  |c Steen Krenk 
246 3 1 |a Non-linear Modeling & Analysis of Solids & Structures 
260 |a Cambridge  |b Cambridge University Press  |c 2009 
300 |a x, 349 pages  |b digital 
653 |a Structural analysis (Engineering) 
653 |a Numerical analysis 
653 |a Finite element method 
653 |a Nonlinear theories 
041 0 7 |a eng  |2 ISO 639-2 
989 |b CBO  |a Cambridge Books Online 
028 5 0 |a 10.1017/CBO9780511812163 
856 4 0 |u https://doi.org/10.1017/CBO9780511812163  |x Verlag  |3 Volltext 
082 0 |a 624.17101518 
520 |a This book presents a theoretical treatment of nonlinear behaviour of solids and structures in such a way that it is suitable for numerical computation, typically using the Finite Element Method. Starting out from elementary concepts, the author systematically uses the principle of virtual work, initially illustrated by truss structures, to give a self-contained and rigorous account of the basic methods. The author illustrates the combination of translations and rotations by finite deformation beam theories in absolute and co-rotation format, and describes the deformation of a three-dimensional continuum in material form. A concise introduction to finite elasticity is followed by an extension to elasto-plastic materials via internal variables and the maximum dissipation principle. Finally, the author presents numerical techniques for solution of the nonlinear global equations and summarises recent results on momentum and energy conserving integration of time-dependent problems. Exercises, examples and algorithms are included throughout