Noise sensitivity of boolean functions and percolation

This is a graduate-level introduction to the theory of Boolean functions, an exciting area lying on the border of probability theory, discrete mathematics, analysis, and theoretical computer science. Certain functions are highly sensitive to noise; this can be seen via Fourier analysis on the hyperc...

Full description

Bibliographic Details
Main Authors: Garban, Christophe, Steif, Jeffrey E. (Author)
Format: eBook
Language:English
Published: Cambridge Cambridge University Press 2015
Series:Institute of Mathematical Statistics textbooks
Subjects:
Online Access:
Collection: Cambridge Books Online - Collection details see MPG.ReNa
LEADER 02054nmm a2200289 u 4500
001 EB001887925
003 EBX01000000000000001051286
005 00000000000000.0
007 cr|||||||||||||||||||||
008 200106 ||| eng
020 |a 9781139924160 
050 4 |a QC174.8 
100 1 |a Garban, Christophe 
245 0 0 |a Noise sensitivity of boolean functions and percolation  |c Christophe Garban, ICJ, Université Lyon, Jeffrey E. Steif, Chalmers University of Technology, Gothenberg 
246 3 1 |a Noise Sensitivity of Boolean Functions & Percolation 
260 |a Cambridge  |b Cambridge University Press  |c 2015 
300 |a xvii, 203 pages  |b digital 
653 |a Statistical physics / Textbooks 
653 |a Percolation (Statistical physics) / Textbooks 
653 |a Algebra, Boolean / Textbooks 
700 1 |a Steif, Jeffrey E.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b CBO  |a Cambridge Books Online 
490 0 |a Institute of Mathematical Statistics textbooks 
856 4 0 |u https://doi.org/10.1017/CBO9781139924160  |x Verlag  |3 Volltext 
082 0 |a 530.13 
520 |a This is a graduate-level introduction to the theory of Boolean functions, an exciting area lying on the border of probability theory, discrete mathematics, analysis, and theoretical computer science. Certain functions are highly sensitive to noise; this can be seen via Fourier analysis on the hypercube. The key model analyzed in depth is critical percolation on the hexagonal lattice. For this model, the critical exponents, previously determined using the now-famous Schramm-Loewner evolution, appear here in the study of sensitivity behavior. Even for this relatively simple model, beyond the Fourier-analytic set-up, there are three crucially important but distinct approaches: hypercontractivity of operators, connections to randomized algorithms, and viewing the spectrum as a random Cantor set. This book assumes a basic background in probability theory and integration theory. Each chapter ends with exercises, some straightforward, some challenging